Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3993results about How to "Improve photocatalytic activity" patented technology

Photocatalysis oxidation treated high concentration organic trade waste

The invention relates to a modified loading nano composite photocatalyst which takes titanium dioxide as main part and adopts new reaction technique to degraded the organic industrial wastewater in a water processing system (see attached drawing 1 in Instruction). The main point on preparing the catalyst lies in that titanium dioxide active compounds loaded on different carriers are employed to prepare a loading photocatalyst with grain diameter of 5-40nm; meanwhile, different elements are mixed into the loading photocatalyst to reduce the composition between photoproduciton electron and cavity, which enables the catalyst to move the light absorbing wavelength thereof towards the visible regions, thus effectively improving the degradation rate of organic pollutants as a new environmental-friendly catalyst. As to the new technique of processing the organic industrial wastewater, the invention overcomes the defects that the present photocatalysts are only used for degrading the organic industrial wastewater with low concentration. The catalyst being irradiated respectively or simultaneously under sunbeam and ultraviolet light can decrease COD values of high-concentration organic industrial wastewater from 10000-40000mg / L to less than 100mg / L in short time, thus meeting the national emission standard.
Owner:BEIJING UNIV OF CHEM TECH

Photocatalyst composite and photocatalytic functional product using the same

The present invention provides a photocatalyst composite in which brittleness and ease of coming-off of a photocatalyst layer are reduced.The photocatalyst composite includes a base material, at least the surface of which is formed of a plastic-deformable solid material; an inorganic particle layer containing inorganic particles disposed on the surface of the base material; and a photocatalyst layer containing a photocatalyst disposed on the surface of the inorganic particle layer; wherein at least one portion of voids in the inorganic particle layer is filled with the solid material, and the surface of the inorganic particle layer is coated with the solid material except for at least one portion.
Owner:SUMITOMO CHEM CO LTD

Graphene/silver phosphate composite visible light photocatalyst and preparation method thereof

The invention discloses a high-efficiency graphene/silver phosphate composite visible light photocatalyst and a preparation method thereof, belonging to the technical field of composite materials and environmental management photocatalysis. The preparation method comprises the following steps: dissolving graphene oxide in water, and carrying out ultrasonic treatment to obtain a graphene oxide dispersed liquid; dissolving silver nitrate in deionized water, gradually and dropwisely adding into the graphene oxide dispersed liquid while stirring to obtain a mixed solution, uniformly stirring, and aging; dropwisely adding a prepared disodium hydrogen phosphate or sodium dihydrogen phosphate solution into the graphene oxide-silver nitrate mixed solution, continuing stirring, transferring into a hydrothermal reaction kettle, carrying out hydrothermal reaction, and cooling to room temperature; and washing the reaction product, and carrying out vacuum drying to obtain the visible light photocatalyst. The invention has the advantages of wide material sources and simple preparation process; and the obtained composite material has the advantages of controllable structure and regular pattern, and has high-efficiency degradation effect on organic dyes rhodamine B and methylene blue with certain concentration under the visible light irradiation.
Owner:JIANGSU UNIV

Method for preparing TiO2/g-C3N4 composite visible light catalyst

The invention discloses a method for preparing a TiO2 / g-C3N4 composite visible light catalyst. The method comprises the following steps: firstly, uniformly dispersing a titanium source and a nitrogen source in ethanol, and subsequently dropping water into ethanol so as to obtain a mixed material; evaporating to dry the mixed material in a stirring state so as to obtain a precursor; transferring the prepared precursor to a muffle furnace, and calcining for 0.5-12 hours at 300-800 DEG C in the muffle furnace, thereby obtaining the TiO2 / g-C3N4 composite visible light catalyst. The TiO2 / g-C3N4 composite visible light catalyst can be prepared while TiO2 and g-C3N4 are prepared, and the synthesis of the two compounds TiO2 and g-C3N4 and the preparation of the composite visible light catalyst are achieved at one step; the process is simple, and industrialization production is easy to achieve. The composite visible light catalyst disclosed by the invention is rich in photocatalytic activity center, relatively high in both light absorption rate and photocatalytic activity, and relatively high in photocatalytic degradation rate of organisms.
Owner:JIANGSU UNIVERSITY OF TECHNOLOGY

Titanium dioxide/graphene nanocomposite material and preparation method and application thereof

InactiveCN102569761AShape is easy to controlControllable surface structureCell electrodesGraphene nanocompositesHigh energy
The invention relates to a titanium dioxide/graphene nanocomposite material, a preparation method of the nanocomposite material and application of the nanocomposite material in the field of energy source and cleaning environment. The graphene accounts for 1-25wt% and the balance is titanium dioxide. Morphology of the titanium dioxide is a mesoporous structure or a structure with a dominant high energy surface, and titanium dioxide is scattered uniformly on the surface of graphene. According to the invention, by adopting a titanium source and graphene as initial materials, and water or organic solvents as reaction solvents, the nanocomposite material with titanium dioxide with the mesoporous structure or a titanium dioxide nano sheet with the dominant high energy surface compounded with graphene can be obtained through hydrothermal synthesis or a hydrolysis reaction. The invention can be carried out in an aqueous solution system and the crystallinity of the product is high. The composite material can be applied to a cathode material of a power ion battery, has a higher charge-discharge capacity, is excellent in high current charge and discharge, stable in circulating performance, has very good photocatalytic performance and can be used to light degradation of organic pollutants and water photolysis for preparing hydrogen.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Graphene/mesoporous titanium dioxide visible light catalyst and preparation method

The invention relates to a graphene / mesoporous titanium dioxide visible light catalyst and a preparation method, and belongs to the technical fields of nanometer composite materials and photocatalysis. The method comprises the following steps of: adding a graphene oxide into glacial acetic acid, and performing ultrasonic dispersion to obtain dispersion liquid of the graphene oxide; and adding a titanium source into the dispersion liquid of the graphene oxide, and preparing the graphene / mesoporous titanium dioxide nanometer composite visible light catalyst in a one-step in-situ form by a hydrothermal method. The graphene / mesoporous titanium dioxide visible light catalyst has the advantages of readily available raw materials and low cost, the preparation process is simple and convenient, and titanium dioxide in the obtained nanometer composite material has a nanometer poroid structure, a regular size and a special appearance; and titanium dioxide nanometer granules can be distributed onthe surface of graphene and are high in dispersity. Photocatalytic degradation experiments indicate that the graphene / mesoporous titanium dioxide nanometer composite light catalyst has a good photocatalytic degradation effect on rhodamine B under the irradiation of visible light, and is an ideal nanometer composite visible light catalyst.
Owner:JIANGSU UNIV

White color reflecting material and process for production thereof

A general-use white color reflecting material, and a process for production thereof are provided. The white color reflecting material, without troublesome surface treatment such as formation of a reflective layer by plating, is capable of reflecting a near-ultraviolet ray of a wavelength region of 380 nm or longer or a near-infrared ray sufficiently without light leakage; does not become yellow even when exposed to near-ultraviolet rays; has excellent lightfastness, heat resistance, and weatherability; has high mechanical strength and chemical stability; is capable of maintaining a high degree of whiteness; and is easily moldable at a low cost. Further a white color reflecting material used as an ink composition for producing the white color reflecting material in a film shape is also provided. The white color reflecting material comprises; a silicone resin or silicone rubber formed from titanium oxide-containing silicone composition, in which anatase-type or rutile-type titanium oxide particles are dispersed.
Owner:ASAHI RUBBER

Preparation method for organic-inorganic composite separation membrane with hydrophilicity and function of photocatalytic degradation of pollutants

InactiveCN104383821AExcellent photocatalytic degradation performanceGood resistance to protein contaminationSemi-permeable membranesMetal/metal-oxides/metal-hydroxide catalystsPhotocatalytic degradationSolvent
The invention relates to a preparation method for an organic-inorganic composite separation membrane with hydrophilicity and the function of photocatalytic degradation of pollutants. The steps include: (1) blending a magnetic composite photocatalytic material composed of the magnetic particle @TiO2 with a graphene oxide loaded core-shell structure, polymer resin, a solvent and an additive to prepare a membrane casting solution; (2) placing the obtained membrane casting solution in a 100-20000 Gauss magnetic field to prepare a membrane, after 10-200sec, immersing the membrane into a coagulation bath for 30-120sec coagulation, taking the membrane out of the coagulation bath, carrying out washing, soaking and drying, thus obtaining the composite separation membrane with the function. By applying the action of a magnetic field in the evaporation and coagulation process of membrane formation, migration of the magnetic composite photocatalytic material in the membrane casting solution to the surface of a separation membrane can be realized, thus solving the problem that during inorganic nano-material blending modification of the separation membrane, nano-materials are mostly embedded in a membrane matrix, and the modification effect of the nano-materials cannot be brought into full play. The surface of the polymer separation membrane is endowed with good hydrophilicity and the property of photocatalytic degradation of pollutants.
Owner:TIANJIN POLYTECHNIC UNIV

Oxygen-doped carbon nitride/zinc oxide photo-catalyst as well as preparation method and application thereof

The invention discloses an oxygen-doped carbon nitride/zinc oxide photo-catalyst as well as a preparation method and application of the oxygen-doped carbon nitride/zinc oxide photo-catalyst. The preparation method comprises the following steps: taking dicyandiamide or melamine as a precursor, calcining to prepare a carbon nitride nanosheet; adding a zinc oxide precursor into absolute ethyl alcohol, then adding dethylenetriamine, carrying out ultrasonic dispersion and subsequently enabling dispersion liquid to be subjected to hydrothermal reaction, so as to obtain zinc oxide nano material; enabling the zinc oxide nano material and the carbon nitride nanosheet to be subjected to ultrasonic dispersion in deionized water, subsequently adding hydrogen peroxide, then carrying out hydrothermal reaction again, and thus obtaining the oxygen-doped carbon nitride/zinc oxide photo-catalyst after the reaction is ended. The oxygen-doped carbon nitride/zinc oxide photo-catalyst adopts low-cost and easily available raw materials; the preparation condition can be easily achieved; the raw materials do not need to be calcined under the condition of high temperature, so that the cost for preparing the oxygen-doped carbon nitride/zinc oxide photo-catalyst is reduced, and the popularization and application of the preparation method are facilitated; meanwhile, the photo-catalyst is low in photo-production electron-cavity compounding efficiency and high in photo-catalytic activity.
Owner:SOUTH CHINA UNIV OF TECH

Technology for preparing organic fuel through directly converting carbon dioxide by using sunlight and photothermal catalyst

The invention discloses a technology for preparing organic fuel through directly converting carbon dioxide by using sunlight and a photothermal catalyst. Sunlight is utilized to supply light and heat for the synthesis and catalytic process of the photothermal catalyst, and the photothermal catalyst can simultaneously absorb and utilize ultraviolet light, visible light and infrared light parts in sunlight, so that a phtothermal catalytic reaction is induced to prepare the organic fuel through reducing carbon dioxide by using hydrogen. The photothermal catalyst comprises the following components: an active component which is a 2-30 nano-scale non-stoichiometric oxide belonging to a VIII-family element in a transition family and a carrier material which is an oxide or carbon material with the specific surface area of 30-1000cm<2>/g, alkaline resistance, high heat conductivity or photocatalytic activity. A steeping and in-situ sintering method or photodepositing and in-situ sintering method is used as a synthesis method so that the energy consumption is low, and the photothermal catalyst has high activity and long service life by using a solar-assisted in-situ sintering technology. The technology for preparing organic fuel through directly converting carbon dioxide by using sunlight and the photothermal catalyst is low in energy consumption in the catalytic process, high in organic fuel production efficiency and stable in catalyst activity.
Owner:TIANJIN UNIV

Broad band light absorbing photocatalyst, process for producing thereof, broad band light absorbing photocatalyst composition, and molded article

The present invention provides a broad band light absorbing photocatalyst which has a high absorptivity not only for visible light but also, in particular, for ultraviolet light, exhibits photocatalytic activity in response to a broad band light over a long period, has a high adsorptivity for objects to be decomposed, and can exhibit oxidative decomposition effect, antibacterial effect, antifouling effect, etc. The broad band light absorbing photocatalyst of the present invention includes an apatite having photocatalytic activity, a visible light absorbing metal atom and an ultraviolet light absorbing metal atom and the ultraviolet light absorbing metal atom is at least one of tungsten (W) and vanadium (V).
Owner:FUJITSU LTD

Preparation method of echinoid titanium dioxide microspheres in single/double layer cavity structure

The invention relates to a preparation method of echinoid titanium dioxide microspheres in single/double layer cavity structure, belonging to the field of nano composite materials. The method comprises the following steps: (1) preparing monodisperse silicon dioxide microspheres with uniform particle size; (2) by using silicon dioxide as a template, coating a titanium dioxide layer on the surface of the silicon dioxide microspheres by using a sol-gel method to obtain core-shell type silicon dioxide/titanium dioxide composite microspheres; (3) regulating the concentration of sodium hydroxide solution, the hydrothermal reaction time and other conditions, and preparing echinoid titanium-base microspheres in the single/double layer cavity structure in a controllable way; and (4) treating the echinoid titanium-base microspheres in the single/double layer cavity structure with hydrochloric acid with a certain concentration, and calcining at high temperature to obtain anatase-type echinoid titanium dioxide microspheres in the single/double layer cavity structure. The material prepared by the method has the high-activity pure-phase titanium dioxide crystal structure, and has the advantages of large specific area, complete appearance and high yield; the technical process is controllable and easy to operate; and the invention also has the advantages of low preparation cost, no pollution and low energy consumption.
Owner:UNIV OF SCI & TECH BEIJING

Preparation method and application of ZnIn2S4-graphene composited photochemical catalyst

The invention discloses a preparation method and application of a ZnIn2S4-graphene composited photochemical catalyst. The preparation method comprises the following steps of: placing graphite oxide into a reducibility alcohol agent for ultrasonic dispersion; adding zinc sulfate and indium chloride into the reducibility alcohol agent, stirring and dissolving; adding thioacetamide into two systems after the two systems are mixed; transferring the mixed systems into a hydrothermal kettle for a reaction; and after the reaction is finished, carrying out vacuum filtration on the obtained product, washing, vacuumizing and grinding to obtain a nano ZnIn2S4-graphene composited photochemical catalyst. In the invention, grapheme is taken as a supporting material, and a solvothermal synthesis method is adopted to further prepare the nano ZnIn2S4-graphene composited photochemical catalyst. The catalyst prepared by using the method in the invention has the advantages of wide visible light responding range and high photocatalysis activity, can be used for transformation and use of solar energy and comprehensive ecological improvement, such as air purification, sewage disposal, hydrogen production through photodegradation, preparation of alcohol or hydrocarbon chemical fuels and the like by the photocatalysis and reduction of CO2.
Owner:HUNAN INSTITUTE OF SCIENCE AND TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products