Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method for preparing TiO2/g-C3N4 composite visible light catalyst

A g-c3n4, visible light technology, used in physical/chemical process catalysts, chemical instruments and methods, chemical/physical processes, etc., can solve the problems of hidden safety hazards and high operational requirements for operators, and achieve light absorption rate and photocatalytic activity. High, simple process, many photocatalytic active centers

Active Publication Date: 2015-01-28
JIANGSU UNIVERSITY OF TECHNOLOGY
View PDF4 Cites 57 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

The ammonium fluoride used in the preparation process of the preparation method is a highly toxic substance, which poses a safety hazard to operators and requires high operating requirements

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for preparing TiO2/g-C3N4 composite visible light catalyst
  • Method for preparing TiO2/g-C3N4 composite visible light catalyst
  • Method for preparing TiO2/g-C3N4 composite visible light catalyst

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1)

[0034] This embodiment prepares TiO 2 / g -C 3 N 4 The method for composite visible light catalyst comprises the following steps:

[0035] ① Precursor preparation. 20mL Ti(OBu) 4 and 20g of melamine in 500mL of ethanol at 20°C were uniformly dispersed, and then added to the Ti(OBu) containing Ti(OBu) 4 Add 50 mL of water dropwise to ethanol containing melamine to obtain a mixed material; evaporate the mixed material to dryness in a water bath at 70°C to 85°C (80°C in this example) under stirring to obtain a precursor 。

[0036] ② Transfer the precursor prepared in step ① to a muffle furnace, and calcinate it at 520 °C for 2 hours in the muffle furnace to obtain TiO 2 / g -C 3 N 4 Composite visible light catalyst.

[0037] Characterize the product obtained in this embodiment: the transmission electron microscope (TEM) used for the characterization is the transmission electron microscope of the JEOL 2010 model of JEOL Corporation; the X-ray diffractometer is the X-ray of ...

Embodiment 2)

[0043] This embodiment prepares TiO 2 / g -C 3 N 4 The method all the other of composite visible photocatalyst is identical with embodiment 1, and difference is: step 1. in Ti(OBu) 4 The addition amount of the solution is 5mL, the temperature of ethanol is 25°C, and the temperature of the water bath is 85°C.

[0044] Detected by X-ray diffractometer, the product of the present embodiment is g-C 3 N 4 , Anatase TiO 2 and rutile TiO 2 The mixture of crystals shows that this embodiment has successfully produced TiO 2 / g -C 3 N 4 Composite visible light catalyst.

[0045] TiO prepared in this embodiment 2 / g -C 3 N 4 The TEM spectrum of the composite visible photocatalyst reveals nano-TiO 2 The particles are evenly distributed in the graphite flake g-C 3 N 4 middle.

[0046] Detected by the ultraviolet-visible spectrometer, the TiO synthesized in this embodiment 2 / g -C 3 N 4 The visible light absorption region of the composite visible light catalyst is from 390 ...

Embodiment 3)

[0049] This embodiment prepares TiO 2 / g -C 3 N 4 The method all the other of composite visible photocatalyst is identical with embodiment 1, and difference is: step 1. in Ti(OBu) 4 The addition amount of water is 100mL, the dropwise addition amount of water is 1000mL, and the temperature of the water bath is 85°C.

[0050] Detected by X-ray diffractometer, the product of the present embodiment is g-C 3 N 4 , Anatase TiO 2 and rutile TiO 2 The mixture of crystals shows that this embodiment has successfully produced TiO 2 / g -C 3 N 4 Composite visible light catalyst.

[0051] TiO prepared in this embodiment 2 / g -C 3 N 4 The TEM spectrum of the composite visible photocatalyst reveals nano-TiO 2 The particles are evenly distributed in the graphite flake g-C 3 N 4 middle.

[0052] Detected by the ultraviolet-visible spectrometer, the TiO synthesized in this embodiment 2 / g -C 3 N 4 The visible light absorption region of the composite visible light catalyst is f...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses a method for preparing a TiO2 / g-C3N4 composite visible light catalyst. The method comprises the following steps: firstly, uniformly dispersing a titanium source and a nitrogen source in ethanol, and subsequently dropping water into ethanol so as to obtain a mixed material; evaporating to dry the mixed material in a stirring state so as to obtain a precursor; transferring the prepared precursor to a muffle furnace, and calcining for 0.5-12 hours at 300-800 DEG C in the muffle furnace, thereby obtaining the TiO2 / g-C3N4 composite visible light catalyst. The TiO2 / g-C3N4 composite visible light catalyst can be prepared while TiO2 and g-C3N4 are prepared, and the synthesis of the two compounds TiO2 and g-C3N4 and the preparation of the composite visible light catalyst are achieved at one step; the process is simple, and industrialization production is easy to achieve. The composite visible light catalyst disclosed by the invention is rich in photocatalytic activity center, relatively high in both light absorption rate and photocatalytic activity, and relatively high in photocatalytic degradation rate of organisms.

Description

technical field [0001] The invention relates to a preparation method of a visible light catalyst, in particular to a TiO 2 / g -C 3 N 4 Preparation method of composite visible light catalyst. Background technique [0002] Semiconductor photocatalysts have attracted much attention in the past few decades. Because it is widely used in direct hydrolysis to obtain renewable energy hydrogen and environmental protection of organic polluted wastewater. [0003] Among many semiconductors, TiO 2 Due to its non-toxicity, low cost, high stability and excellent photocatalytic ability, it has become the most researched and most promising semiconductor material. However, due to its large energy gap (such as anatase TiO 2 3.2 eV), can only use the ultraviolet (UV) part that accounts for 3% to 4% of sunlight, and the quantum efficiency is low, thus limiting the TiO 2 Applications. Therefore, methods such as doping, metal deposition, and preparation of composite materials have been a...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B01J27/24B01J35/02C02F1/30C02F101/38
CPCC02F1/30B01J27/24C02F2305/10C02F2101/308C02F2101/30C02F2101/40C02F2101/38B01J35/00B01J35/30B01J35/39Y02W10/37
Inventor 张春勇郑纯智文颖频张国华舒莉程洁红马迪
Owner JIANGSU UNIVERSITY OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products