Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1309results about How to "Reduce compounding" patented technology

Photocatalysis oxidation treated high concentration organic trade waste

The invention relates to a modified loading nano composite photocatalyst which takes titanium dioxide as main part and adopts new reaction technique to degraded the organic industrial wastewater in a water processing system (see attached drawing 1 in Instruction). The main point on preparing the catalyst lies in that titanium dioxide active compounds loaded on different carriers are employed to prepare a loading photocatalyst with grain diameter of 5-40nm; meanwhile, different elements are mixed into the loading photocatalyst to reduce the composition between photoproduciton electron and cavity, which enables the catalyst to move the light absorbing wavelength thereof towards the visible regions, thus effectively improving the degradation rate of organic pollutants as a new environmental-friendly catalyst. As to the new technique of processing the organic industrial wastewater, the invention overcomes the defects that the present photocatalysts are only used for degrading the organic industrial wastewater with low concentration. The catalyst being irradiated respectively or simultaneously under sunbeam and ultraviolet light can decrease COD values of high-concentration organic industrial wastewater from 10000-40000mg / L to less than 100mg / L in short time, thus meeting the national emission standard.
Owner:BEIJING UNIV OF CHEM TECH

Method for preparing N-type crystalline silicon solar cell with aluminum-based local emitters on back side

The invention provides a method for preparing an N-type crystalline silicon solar cell with aluminum-based local emitters on the back side. The method comprises the following steps: firstly, selecting N-type silicon wafers to carry out the surface-textured etching process; further forming a front surface field through phosphorous diffusion; depositing a passivating film on the front surface after the phosphorosilicate glass is formed during the removal of diffused phosphorous; carrying out the back-side chemical polishing process on the silicon wafers to remove the N+ layer formed on the back side during the phosphorous diffusion; then, sequentially printing an aluminum layer or a silver-aluminum layer through the passivating film deposited on the back side, local holes or grooves on the back side and screens on the back side; then, printing silver paste on the front surface; and finally, carrying out the one-step sintering process to form a local P+ layer on the back side and allowing the P+ layer to coming into ohmic contact with the electrodes on the front and back surfaces. By using the N-type substrate, forming local aluminum-based P-N junctions on the back side and further using the back-side chemical polishing process to remove the edge junctions, the invention can substitute for the conventional stacking-type plasma etching process, simplify the technological procedures and further bring a series of performance improvement to cells.
Owner:JA YANGZHOU SOLAR PHOTOVOLTAIC ENG

Organic recycling with metal addition

The invention is directed to methods for producing a granular nitrogen fertilizer from an organic material comprising adding a metallic salt to said organic material to form a slurry. Preferably the organic material comprises dewatered biosolids and contains water from a scrubber. Metallic salts that can be used comprise a salt of iron, zinc, or a mixture thereof. Preferred iron salts comprises ferric sulfate or ferric oxide, and preferred zinc salts comprises zinc sulfate or zinc oxide. Preferably, the metallic salt is mixed with an acid such as sulfuric acid to form an acidified metal salt. Slurry pH ranges from approximately 2-2.5. The acidified metal salt is added to the organic material in sufficient quantity to lower viscosity of the slurry such that the resulting fluid does not hinder fluid flow during operation. When the metallic salt comprises acidified ferric sulfate or ferrous sulfate, sufficient iron can be present to produce a fertilizer product with 0.1 weight percent to 10 weight percent iron sulfate calculated on a dry weight basis. The invention is also directed to fertilizer products made by the methods of the invention. Preferred products are granules and the metallic salt increases product hardness. Fertilizer granules preferably contain metal that is bioavailable to a plant when used as a fertilizer. Solubility of the metal of the product in water is enhanced, and the product is low staining.
Owner:UNIFIED ENVIRONMENTAL SERVICES GROUP +1

Silver-carrying titanium dioxide anti-bacterial agent and preparation method thereof

InactiveCN102205244AEnhance photocatalytic antibacterial effectReduce compoundingBiocideFungicidesMicrosphereCombined method
The invention belongs to the technical field of environmental catalytic materials and specifically relates to a preparation method of a silver-carrying titanium dioxide anti-bacterial agent. The anti-bacterial agent comprises titanium dioxide microspheres as carriers with a high length-diameter ratio and silver particles distributed on surfaces or interiors of the titanium dioxide microspheres. The preparation method comprises a titanium dioxide microsphere preparation method and a silver particle carrying method, wherein the silver particle carrying method adopts the following three methods of a complex reaction and photo-reduction combined method, a direct photo-reduction method and an excessive immersion method. The operation of the present preparation method is simple. Titanium dioxide carriers prepared by the present preparation method has a high length-diameter ratio, a high crystallinity and thus can reduce effectively recombination of electrons and holes and enhance titanium dioxide photocatalytical and anti-bacterial effects, and the silver particle carrying method can effectively control a dispersibility of silver and make silver be distributed on surfaces or interiors of titanium dioxide microspheres to realize a slow release of silver, avoid color change, and enhance anti-bacterial effects simultaneously.
Owner:FUDAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products