Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

817 results about "Photocatalytic decomposition" patented technology

The photocatalytic decomposition of AcOH was carried out in a circulation system made of Pyrex, in which a suspension of the photocatalyst powder (200 mg) in an aerated aqueous AcOH solution (5 vol%, 300 mL) was continuously stirred using a magnetic stirrer.

High-durability super-hydrophobic self-cleaning coating material and preparation method thereof

InactiveCN101962514AHas the following advantages: (1) cleanlinessHas the following advantages: (1) has the functionAntifouling/underwater paintsPaints with biocidesDouble bondDimethyl siloxane
The invention belongs to the technical field of a new chemical material, and in particular relates to a high-durability super-hydrophobic self-cleaning coating material and a preparation method thereof. The coating material of the invention is prepared by curing and drying nanoparticles with photo-catalytic activity, a low-surface-free-energy polymer and a cross-linking agent at the room temperature, wherein the low-surface-free-energy polymer consists of one or more of polysiloxane fluoride, dimethyl silicone polymer and polyphenylene methyl siloxane, which contain active groups, such as hydroxyl alkoxy group, carbon-carbon double bond, silanol group, siloxy group, and the like; the cross-linking agent is hydrogen-containing silicone oil or aminosilane; and the mass content of the photo-catalytic nanoparticles in the coating ranges from 10 to 60 percent. The coating is formed into a micro-nanostructure by nanoparticle self-organization; a super-hydrophobic self-cleaning coating with lotus effect is prepared from the coating and a cross-linked filming matrix with low surface energy; the persistence of a lotus-shaped super-hydrophobic characteristic of the coating is realized by using the photo-catalytic decomposition characteristic of an organic pollutant for the nanoparticles; and thus the material is suitable for large-area construction and has high weathering resistance andprominent self-cleaning characteristic.
Owner:FUDAN UNIV

Preparation method of a novel catalyst for hydrogen production by photolysis of water without precious metals

The invention relates to a preparation method of a solar light splitting water hydrogen production catalyst without noble metal as a cocatalyst. Specifically, graphene is used as a cocatalyst to prepare semiconductor nanoparticle-graphene composite photocatalysts, including CdS-graphene composites and TiO2-graphene composites. The hydrogen production efficiency of the photocatalyst with graphene as the cocatalyst is comparable to or even higher than that of the photocatalyst containing the same mass of noble metal Pt under the same hydrogen production conditions. Graphene materials have good electron aggregation and transport functions, which promote the effective separation of electrons and holes, reduce the probability of proton recombination, and increase the photocatalytic efficiency of photocatalysts and the efficiency of photo-splitting water to produce hydrogen; and the preparation method of graphene materials is simple , cheaper than precious metals, and has no pollution to the environment, which is conducive to large-scale preparation and production. The preparation of photocatalysts using graphene as a cocatalyst has opened up a new method for reducing the cost of hydrogen production from solar energy and improving the efficiency of hydrogen production by photolysis of water.
Owner:付文甫 +1

System and method for desulfurizing, denitrifying and removing mercury based on photoactivation ammonium persulfate

The invention discloses a system and a method for desulfurizing, denitrifying and removing mercury based on photoactivation ammonium persulfate. The system is mainly provided with a boiler or kiln, a deduster, a flue gas temperature regulator, a photochemistry reactor, a liquid spraying system as well as a byproduct post-processing system. Flue gas discharged from the boiler or kiln enters the photochemistry reactor arranged on a flue channel after being subjected to dedusting and temperature regulation, and an ammonium persulfate solution from the liquid spraying system is sprayed into the photochemistry reactor in a mist form; an UV (ultraviolet) lamp in the photochemistry reactor emits UV light to perform catalytic decomposition on ammonium persulfate, releases sulfate radical free radicals with high oxidizing property (SO4-.), and meanwhile oxidizes and removes SO2, NOx and mercury in the flue gas. Oxidized products are subjected to resource utilization after being processed by the byproduct post-processing system. The method has the prominent advantages that the method can be used for removing multiple pollutants in coal burned flue gas synchronously, has no secondary pollution during removing, and can be used for transforming aging units and the like, and the system is a novel flue gas purifying system with a wide application prospect.
Owner:JIANGSU UNIV

Molybdenum disulfide-cadmium sulfide nanometer composite material and preparing method and application thereof

The invention relates to a molybdenum disulfide-cadmium sulfide nanometer composite material and a preparing method thereof and an application of the molybdenum disulfide-cadmium sulfide nanometer composite material to water-photocatalytic-decomposition hydrogen production. The nanometer composite material comprises nanometer cadmium sulfide, and undefined-structure layered nanometer molybdenum disulfide growing on the nanometer cadmium sulfide in an in-situ mode. According to the nanometer composite material, the nanometer cadmium sulfide serves as a carrier; as the nanometer cadmium sulfide is of a nanometer structure, on one hand, the transmission path of electron holes can be shortened; on the other hand, as the specific surface area of the nanometer cadmium sulfide is large, the loading capacity of the molybdenum disulfide can be controlled. The molybdenum disulfide is in a layered shape and is of the undefined structure; when the molybdenum disulfide is used as a catalyst of water-photocatalytic-decomposition hydrogen production, a large number of active sites are provided for photoelectron and hydrogen ions in water reacting, and therefore the catalytic activity is improved. The molybdenum disulfide-cadmium sulfide nanometer composite material is used as the catalyst, and has the multiple advantages of being simple in method, low in cost, high in catalytic activity and the like.
Owner:INST OF CHEM CHINESE ACAD OF SCI

Atom dispersion water oxidation catalyst and preparation and application thereof

The invention relates to an atom dispersion water oxidation catalyst and a preparation method and application thereof. The method comprises the steps that firstly, metal ions and nonmetal atoms are embedded into a carbon-based material framework; and generated oxides are removed through acid treatment, so that the atom dispersion catalyst is obtained. By means of the method, the dispersive atom catalyst containing the metal ions such as vanadium, chromium, manganese, iron, cobalt, nickel, copper, ruthenium, palladium, silver, cadmium, iridium and lead can be prepared. The metal ions in a material synthesized through the method are mainly embedded into the framework of a carbon-based carrier in the form of single atoms, and the metal loading amount can reach 1.5% or above by weight. The catalytic performance of the atom dispersion catalytic material prepared through the method can compare favorably with that of PSII in the nature; the preparation cost is low; and the wide application prospect can be achieved in the processes of water decomposition conducted through electro-catalysis, water decomposition conducted through photoelectrocatalysis, water decomposition conducted through photo-catalysis and manual photosynthesis carbon dioxide reduction and conversion.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Method for separating and preparing hydrogen by decomposing water in fuel cell through photocatalysis

The invention provides a method for separating and preparing hydrogen by decomposing water in a fuel cell through photocatalysis according to the inverse principle of the hydrogen fuel cell, aiming to avoiding the current separation problem of hydrogen and oxygen prepared by decomposing water through solar energy photocatalysis. The method adopts the inverse principle of the hydrogen fuel cell and uses photocatalyst as raw material for a photoanode, and platinum, nickel or carbon electrode as a cathode; an ion film is used between the two electrodes to transfer protons or hydroxyl ions, circuit is formed by connecting the photoanode and the cathode with a lead; sunlight or simulated sunlight is used as a light source, the light directly shines down upon the photoanode; and hydrogen is generated on the cathode and an oxidation reaction is performed on the anode so as to realize the aim of separating and preparing hydrogen by decomposing water through photocatalysis. In the method of the invention, no sacrifice agent or inhibitor is needed to add for adjusting the pH value of the electrolyte solution, an external power source can be added as additional bias so as to directly separate and prepare hydrogen by decomposing water through photocatalysis, and the separation problem of hydrogen and oxygen in practical technology development for decomposing water through solar energy photocatalysis is successfully solved.
Owner:GUANGZHOU INST OF ENERGY CONVERSION - CHINESE ACAD OF SCI

BiOI-graphene visible light catalyst and preparation method thereof

The invention relates to a BiOI-graphene visible light catalyst and a preparation method thereof, belonging to the technical field of inorganic material synthesis and photocatalysis. BiOI and graphene are in the shape of a slice, and the graphene is 1.0%-3.0% by weight. The preparation method of the BiOI-graphene visible light catalyst comprises the following steps of: firstly ultrasonically dispersing graphite oxides into ethanol; then stirring, and adding a certain amount of sodium iodide or potassium iodide water solutions and bismuth nitrate glacial acetic acid solutions at the same time; transferring suspending liquid into a high-pressure reaction kettle with a polytetrafluoroethylene liner, and carrying out crystallization reaction at 120-150 DEG C for 6-12 hours; filtering, washing and drying obtain solid products so as to finally obtain the BiOI-graphene compound light catalyst. The preparation method has environment friendliness and simple process; and the prepared BiOI-graphene visible light catalyst has very high visible light catalytic activity and potential application value in a control technology decomposing organic pollutants by utilizing solar photocatalysis.
Owner:SHANGHAI UNIV

CdS quantum dot/superthin g-C3N4 nanosheet composite photocatalyst and preparation method thereof

The invention discloses a CdS quantum dot/superthin g-C3N4 nanosheet composite photocatalyst and a preparation method thereof. CdS quantum dot/superthin g-C3N4 is a composite visible light catalyst formed by loading CdS quantum dots on a superthin g-C3N4 nanosheet. Compared with a pure g-C3N4 catalyst, the CdS quantum dot/superthin g-C3N4 photocatalyst prepared by the preparation method disclosed by the invention is higher in photocatalyst activity; under the irradiation of visible light, the hydrogen production efficiency of the catalyst by photocatalytic decomposition reaches 998mu molh<-1>g<-1>. The CdS quantum dot/superthin g-C3N4 nanosheet composite photocatalyst and the preparation method thereof disclosed by the invention have the advantages that raw materials are low in price and easily obtained, an experiment method is simple, and the catalyst is wide in light response range and high in photocatalytic efficiency. The material is matched with other materials to form a corresponding photocatalytic device; the CdS quantum dot/superthin g-C3N4 nanosheet composite photocatalyst has good potential application prospect of promoting the industrial development of the solar scale hydrogen production technology and solar catalytic oxidation and synthesis.
Owner:NANCHANG HANGKONG UNIVERSITY

Sulfur doped graphite phase carbon nitride pholocatalyst and application thereof in photocatalysis TCP (2,4,6-trichlorophenol) degradation reaction and photocatalysis hydrogen preparation reaction

The invention belongs to the technical field of semiconductor photocatalysis, and in particular relates to a sulfur doped graphite phase carbon nitride pholocatalyst and application thereof in photocatalysis TCP (2,4,6-trichlorophenol) degradation reaction and photocatalysis hydrogen preparation reaction. A dielectric barrier discharge plasma generator is adopted, and H2S is used as a discharge gas to perform discharge treatment on a graphite phase carbon nitride catalyst. The sulfur species have high activity under a plasma state, so that compared with a conventional preparation method, graphite phase carbon nitride catalysts can be doped more easily. The sulfur doped graphite phase carbon nitride pholocatalyst provided by the invention has the advantages that the sulfur doped amount is adjustable, the specific area of a product catalyst is large, the visible light absorbability is strong, the electron-hole separation efficiency is high, and the photocatalysis performance is good. The catalyst prepared by the method provided by the invention is applied to a photocatalysis degradation process of a common pollutant namely 2,4,6-trichlorophenol (TCP) and a photocatalysis water decomposition hydrogen preparation process, the same evaluation device is adopted, and compared with the sulfur doped graphite phase carbon nitride pholocatalyst prepared by a conventional method, the sulfur doped graphite phase carbon nitride pholocatalyst provided by the invention shows more superior catalytic activity.
Owner:LIAONING UNIVERSITY OF PETROLEUM AND CHEMICAL TECHNOLOGY

Visible-light-induced photocatalyst Bi4O5Br2 and preparation method thereof

The invention discloses a visible-light-induced photocatalyst Bi4O5Br2 and a preparation method thereof. According to the visible-light-induced photocatalyst Bi4O5Br2 and the preparation method thereof, an improved low-temperature hydrothermal method is adopted, composition of Bi, O and Br in BiOX is controlled by controlling amount of a bismuth source and a bromine source, and a novel layered-cake-shaped visible-light-induced photocatalyst Bi4O5Br2 is prepared successfully. The preparation method is simple in production process, easy to operate, low in synthesis temperature, high in reaction yield, environment-friendly and low in cost and meets the requirement of actual production, the reaction yield is 92%, and raw materials are easy to obtain. The visible-light-induced photocatalyst has good visible-light catalytic activity, can completely degrade various organic pollutants such as rhodamine b, methyl orange and methylene blue in short time under the visible light irradiation, is small in light corrosion and good in reusability, can be applied to industrial production and particularly has a better application value in organic pollutant degradation through solar photocatalysis, and the market potential is large.
Owner:YULIN NORMAL UNIVERSITY

Method for ultrasonically catalyzing and extracting hemicellulose, cellulose and lignin from plant straws

The invention discloses a method for ultrasonically catalyzing and extracting hemicellulose, cellulose and lignin from plant straws. The method comprises the following steps of: (1) airing plant straws and then mechanically crushing, collecting plant straw powder, fully drying and removing moisture; (2) dispersing the dried plant straw powder into a water solution and then carrying out ultrasonic treatment, dissolving the hemicellulose into the water solution, then separating the water solution, and carrying out photocatalytic decomposition on the separated plant straw residuals by taking nano Fe3O4-TiO2 as a photocatalyst with a core-shell structure; (3) separating and extracting lignin from the residuals subjected to the photocatalytic decomposition by using an organic solvent in an extraction way, wherein the extracted residuals are a mixture of the cellulose and the photocatalyst; and (4) putting the extracted residuals under a magnetic field to separate the cellulose from the photocatalyst to obtain the cellulose. The invention successfully realizes the separation and the full utilization of the hemicellulose, the cellulose and the lignin in the plant straws and improves the utilization ratio of renewable resources.
Owner:ZHEJIANG SCI-TECH UNIV

Dried persimmon-shaped visible-light-driven photocatalyst BiOBr and preparation method thereof

The invention discloses a dried persimmon-shaped visible-light-driven photocatalyst BiOBr and a preparation method thereof. The inventor adopts a low-temperature solvothermal method, controls the morphology of a halogen-bismuth-oxide visible-light-driven photocatalyst by controlling the dosage of a bismuth source and a bromine source and adding a structure guiding agent, and successfully prepares the novel efficient visible-light-driven photocatalyst BiOBr with novel and special morphology, the dried persimmon shape, for the first time. The preparation method disclosed by the invention is simple in overall production technology, easy to operate, low in synthesis temperature, high in reaction yield (89%), friendly to environment and low in cost, and accords with the requirements of practical production, and the raw materials are readily available. The visible-light-driven photocatalyst disclosed by the invention has good visible-light catalytic activity, can completely degrade a plurality of organic pollutants (such as methylthionine chloride and methyl orange) within a short period of time under irradiation of visible light, is small in light corrosivity, good in reusability and large in market potential, can be applied to industrial production, and especially has good application value in photocatalytic decomposition of organic pollutants by solar energy.
Owner:YULIN NORMAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products