Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5714 results about "Molybdenum disulfide" patented technology

Molybdenum disulfide (or moly) is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is MoS₂. The compound is classified as a transition metal dichalcogenide. It is a silvery black solid that occurs as the mineral molybdenite, the principal ore for molybdenum. MoS₂ is relatively unreactive. It is unaffected by dilute acids and oxygen. In appearance and feel, molybdenum disulfide is similar to graphite. It is widely used as a dry lubricant because of its low friction and robustness. Bulk MoS₂ is a diamagnetic, indirect bandgap semiconductor similar to silicon, with a bandgap of 1.23 eV.

Graphene/MoS2 compound nano material lithium ion battery electrode and preparation method thereof

The invention discloses a graphene / molybdenum disulfide (MoS2) compound nano material lithium ion battery electrode and a preparation method thereof. The electrode comprises the following components in percentage by mass: 75 to 85 percent of compound nano material serving as an active substance, of a graphene nano slice and MoS2, and 5 to 10 percent of acetylene black and 10 percent of polyvinylidene fluoride; and the mass ratio of the graphene nano slice to the MoS2 nano material in the compound nano material active substance is (1 to 1)-(4 to 1). The preparation method of the electrode comprises the following steps of: preparing an oxidized graphite nano slice by using graphite as a raw material by a chemical oxidization method; synthesizing by a one-step hydrothermal in-situ reduction method in the presence of the oxidized graphite nano slice to obtain a graphene nano slice / MoS2 compound nano material; and finally, preparing the electrode by using the graphene nano slice / MoS2 compound nano material as the active substance. The electrode has high electrochemical lithium storage reversible capacity and cyclic stabilization performance, and can be widely applied to new generation lithium ion batteries.
Owner:ZHEJIANG UNIV

Graphene nano sheet/MoS2 composite nano material and synthesis method thereof

The invention discloses a graphene nano sheet/MoS2 composite nano material and a synthesis method thereof. The method comprises the following steps of: preparing a graphite oxide nano sheet from graphite by using a chemical oxidation method, then dissolving molybdate into deionized water to form a solution of 0.02 to 0.07M, and adding thioacetamide or thiourea serving as a sulfur source and a reducer, wherein the mass ratio of the thioacetamide or the thiourea to the molybdate is 5:1-12:1; and adding the graphite oxide nano sheet into the solution, performing ultrasonic treatment for 1 to 2 hours so that the graphite oxide nano sheet is fully dispersed in a hydrothermal reaction solution, transferring the mixture into a hydrothermal reaction kettle, sealing, reacting for 20 to 36 hours at the temperature of between 220 and 260 DEG C, and obtaining the graphene nano sheet/molybdenum disulfide composite nano material by one-step hydrothermal synthesis, wherein the mass ratio of the graphene nano sheet to the molybdenum disulfide in the composite material is 1:2-4:1. The method has the characteristics of mild reaction condition and simple process. The synthesized graphene nano sheet/molybdenum disulfide composite nano material serving as an electrochemical lithium storage and electrochemical magnesium storage electrode material has wide application.
Owner:ZHEJIANG UNIV

Molybdenum disulfide nano-sheet film material and its preparation methods

The invention discloses a molybdenum disulfide (MoS2) nano-sheet film material and its preparation methods. The film material is characterized in that MoS2 nano-sheets vertically and sequentially grow on a conductive substrate, and the diameters and the thicknesses of the MoS2 nano-sheets are 0.05-2mum and 2-30nm respectively. There are two preparation methods of the film material. One preparation method comprises the following steps: a substrate which can be a copper sheet, a silver sheet, a titanium sheet, a tungsten sheet, a molybdenum sheet or carbon is placed in a solution comprising a molybdate and sulfur-containing compounds (comprising thiourea, thioacetamide and L-cysteine); and the sulfur-containing compounds undergo a hydrothermal reaction to grow the compactly-grown and uniformly-sequential MoS2 nano-sheet films on the substrate. Another method comprises the following steps: the molybdenum sheet is directly placed in a solution of the sulfur-containing compounds (comprising thiourea, thioacetamide and L-cysteine); and the sulfur-containing compounds undergo a sulfuration reaction under a hydrothermal condition to form the compact and uniform MoS2 nano-sheet ordered films. The film has a low hydrogen evolution overpotential (-30mv), a small Tafel slope (52mV/dec) and a high electrochemical stability, and is a hydrogen evolution electrode material extremely having an application prospect.
Owner:深圳海氢科技有限公司

Compound nano material of graphene and MoS2 and preparation method thereof

The invention discloses a compound nano material of graphene and molybdenum disulfide (MoS2) and a preparation method thereof. The compound material is formed by mixing graphene and a MoS2 nano material in a mass ratio of (1 to 1)-(4 to 1). The preparation method comprises the following steps of: preparing an oxidized graphite nano slice from graphite by a chemical oxidization method; then dissolving molybdate into deionized water so as to form 0.02 to 0.07M of solution; adding L-cysteine serving as a sulfur source and a reduction agent, wherein the mass ratio of the L-cysteine to the molybdate is (5 to 1)-(12 to 1); adding the oxidized graphite nano slice into the solution, and ultrasonically treating so that the oxidized graphite nano slice can be fully dispersed in the hydrothermal reaction solution; transferring the mixture into a hydrothermal reaction kettle and sealing; and synthesizing by a one-step hydrothermal method to obtain the compound nano material of graphene and MoS2, wherein the mass ratio of the graphene nano slice to the MoS2 is (1 to 1)-(4 to 1). The method has the characteristics of mild reaction condition and simple process. The compound nano material of graphene and MoS2 synthesized by the method can be widely used as electrode materials of new energy batteries, high-performance national lubricants, catalyst carriers and the like.
Owner:ZHEJIANG UNIV

Graphene/molybdenum disulfide composite electrode material and preparation method thereof

The invention relates to the fields of a novel chemical electric power source and a new energy material, and particularly discloses a graphene/molybdenum disulfide composite electrode material and a preparation method of the composite electrode material. The preparation method comprises the steps of: (1) preparing graphite oxide from graphite as a raw material by an oxidation and intercalation method; (2) dissolving prepared graphite oxide with deionized water, carrying out ultrasonic stripping to obtain a graphene oxide solution, then adding DMF (dimethyl formamide) and molybdate, finally adding a reducing agent, and dispersing uniformly to obtain a mixed solution; and (3) transferring the mixed solution to a reaction kettle, keeping the temperature in the temperature condition of greater than or equal to 180 DEG C for 5-10h, centrifuging and washing the product to remove DMF, and drying to obtain the graphene/molybdenum disulfide composite electrode material product. The preparation method of the graphene/molybdenum disulfide composite electrode material is simple, uniform in reaction system and low in production cost, and is particularly suitable for requirements of industrial large scale production; and the prepared product graphene/molybdenum disulfide composite electrode material has better electrochemical performances.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Copper-free ceramic friction material with little falling ash and preparation method thereof

The invention discloses a copper-free ceramic friction material with little falling ash and a preparation method thereof. The copper-free ceramic friction material with little falling ash is prepared by mixing, shaping and thermally processing the following raw materials in percentage by weight: 5 to 14 percent of adhesive, 20 to 45 percent of reinforcing material, 10 to 40 percent of ceramic material, 10 to 18 percent of lubricant and the balance of filler, wherein nitrile rubber modified phenolic resin and nitrile rubber powder are used as the adhesive; the reinforcing material is one or a mixture of more of aramid fiber, carbon fiber, steel fiber, foam iron powder and aluminum oxide fiber; the ceramic material is one or a combination of more of molybdenum disulfide, magnesium oxide andferrous disulphide; the lubricant is the mixture of graphite and mica; and the filler is the mixture of composite filler, barite, friction powder and aluminum powder. The material has high friction performance, low brake noise and high heat fading resistance, and particularly shows high performance in aspects of wear resistance, long life and great reduction in the falling ash of a wheel hub; therefore, the material can meet both the requirement of a modern automobile braking system on operating conditions and the requirement on economy and environment friendliness when an automobile is used.
Owner:HUNAN BOYUN AUTOMOBILE BRAKE MATERIALS +1

Molybdenum disulfide-cadmium sulfide nanometer composite material and preparing method and application thereof

The invention relates to a molybdenum disulfide-cadmium sulfide nanometer composite material and a preparing method thereof and an application of the molybdenum disulfide-cadmium sulfide nanometer composite material to water-photocatalytic-decomposition hydrogen production. The nanometer composite material comprises nanometer cadmium sulfide, and undefined-structure layered nanometer molybdenum disulfide growing on the nanometer cadmium sulfide in an in-situ mode. According to the nanometer composite material, the nanometer cadmium sulfide serves as a carrier; as the nanometer cadmium sulfide is of a nanometer structure, on one hand, the transmission path of electron holes can be shortened; on the other hand, as the specific surface area of the nanometer cadmium sulfide is large, the loading capacity of the molybdenum disulfide can be controlled. The molybdenum disulfide is in a layered shape and is of the undefined structure; when the molybdenum disulfide is used as a catalyst of water-photocatalytic-decomposition hydrogen production, a large number of active sites are provided for photoelectron and hydrogen ions in water reacting, and therefore the catalytic activity is improved. The molybdenum disulfide-cadmium sulfide nanometer composite material is used as the catalyst, and has the multiple advantages of being simple in method, low in cost, high in catalytic activity and the like.
Owner:INST OF CHEM CHINESE ACAD OF SCI

High friction composite brake shoe for railway freight car and manufacture method thereof

The invention discloses a high friction composite brake shoe for a railway wagon and a manufacturing method thereof. The composite brake shoe comprises: a steel back and a brake shoe body which is fixed on the steel back, wherein, the brake shoe body is prepared by materials which are synthesized by various components with the following weight ratio: 8 to13 parts of nitrile butadiene rubber, 2 to10 parts of styrene butasiene rubber, 5 to10 parts of cresol modified A-stage phenolic resin, 15 to 30 parts of steel fiber, 10 to 15 parts of magnesium oxide, 5 to 10 parts of calcined petroleum coke, 2 to 5 parts of silicon carbide, 10 to25 parts of mineral fiber, 5 to 10 parts of calcium hydride, 10 to 20 parts of barium sulfate, 5 to 10 parts of graphite, 1 to 5 parts of molybdenum disulfide, 1 to 5 parts of carbon black, 1 to 3 parts of sulfur and 1 to 3 parts of enhancer. The brake shoe can be used in the railway heavy-duty high-speed wagon and has stable friction performance and better wear resistance; the brake shoe can effectively inhibit the phenomena of metal inlay, cracks, dropping blocks and the like and reduce the damages on wheels; and the brake shoe is characterized by better impact resistance performance and good weatherability.
Owner:BEIJING RAILWAY STAR FORTUNE HIGH TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products