Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3869 results about "Catalytic efficiency" patented technology

Catalytic Efficiency of Enzymes (kcat/Km) One way to measure the catalytic efficiency of a given enzyme is to determine the kcat/km ratio. Recall that kcat is the turnover number and this describes how many substrate molecules are transformed into products per unit time by a single enzyme.

Catalyst for oxidation and decomposition of organic pollutants in water with ozone and method thereof for catalyzing sewage treatment with ozone

The invention discloses a catalyst for oxidation and decomposition of organic pollutants in water with ozone and a method thereof for catalyzing sewage treatment with ozone, and relates to a catalyst for decomposing the organic pollutants in water and the method thereof for sewage treatment. By adopting the catalyst, the problems that the traditional solid catalyst for catalyzing the decomposition of organic pollutants in the water with ozone is easy to be oxidized and decomposed by ozone, easy to break, can dissolve out impurities, has low strength and low catalytic efficiency and is difficult to recover can be solved. The catalyst for oxidation and decomposition of the organic pollutants in the water with ozone refers to spinel ferrite or a composite of spinel ferrite; and the method of the catalyst for catalyzing the sewage treatment with ozone comprises the following steps of: adjusting pH and temperature of sewage, then introducing ozone, further adding the catalyst and treating for 1 minute-120 minutes, then using a magnetic field to recover the catalyst, and finally absorbing tail gas of the ozone. The catalyst can improve the removal rate of organic matters to 90%-100%, and can be used for sewage treatment or deep treatment of drinking water.
Owner:HARBIN INST OF TECH

Low temperature denitration catalytic addictive and preparation method thereof

The invention discloses a low temperature denitration catalytic addictive and a preparation method thereof, and belongs to the field of low temperature denitration catalyst. According to the low temperature denitration catalytic addictive, TiO2-SiO2 is taken as carrier, manganese oxide (MnOx) is taken as active substance, and cerium oxide (CeO2), nickel oxide (NiO) and iron oxide (FeOx) are taken as auxiliary agents. The preparation method comprises following steps: TiO2-SiO2 composite carrier is prepared by sol-gel method; loading of CeO2, NiO or FeOx is realized by one-step dipping; and then the low temperature denitration catalytic addictive is obtained by calcination. The low temperature denitration catalytic addictive possesses high low-temperature denitration catalytic efficiency, wide active temperature window, and relatively high alkali metal poisoning resistance. TiO2-SiO2 is low in cost, and specific area of TiO2-SiO2 is larger than that of pure TiO2 carrier, so that it is beneficial for dispersion of active substances on the surface of TiO2-SiO2, and stability of the active substances. Auxiliary agent NiO or FeOx are capable of increasing low-temperature activity and alkali metal poisoning resistance of the low temperature denitration catalytic addictive, so that the low temperature denitration catalytic addictive is suitable for denitration in dedusted cement kiln at low temperature or even under conditions with unstable temperature.
Owner:BEIJING UNIV OF TECH

Preparation method and application of iron-nitrogen co-doped porous carbon sphere material

The invention discloses a preparation method for an iron-nitrogen co-doped porous carbon sphere material. The preparation method comprises the following steps: by taking 2-aminopyridine as a monomer and taking ammonium persulfate and ferric chloride as oxidants, performing in-situ polymerization reaction in a duct of a porous silicon dioxide template to obtain a precursor; performing high-temperature carbonization treatment on the precursor in a tubular furnace and an inert gas nitrogen-gas environment; and removing the silicon dioxide template by hydrofluoric acid to obtain the iron-nitrogen co-doped porous carbon sphere material which is taken as an electric catalyst to achieve good catalytic effect in oxygen gas reduction reaction. The preparation method has the advantages that the process is simple and easy to perform and the raw materials are cheap. The prepared carbon material contains a three-dimensional communicated pore structure, has a high specific surface area and a large pore volume, can effectively improve the electric catalytic activity through the heteroatom nitrogen-iron doping, has relatively high electric catalytic efficiency while being applied as a low-price electric catalyst, and has an important value and significance in the fields of doped type porous carbon material preparation and proton membrane fuel battery electric catalysis.
Owner:NANKAI UNIV

Process for producing ruthenium base catalyst for producing cyclohexene with benzene selective hydrogenation

The invention pertains to chemical engineering field, in particular to a preparation method of a Ru-based catalyst, the catalyst has uniform load and high catalytic efficiency and is used for preparing cyclohexene from benzene through selectively hydrogenation reaction. A precursor of the catalyst is prepared through a cyclohexene/ water component solvent system, and then reduced by a mixing gas of H2 or Ar to prepare the catalyst, and the catalyst consists of ruthenium, a dressing agent and a mesoporous silicon dioxide carrier L, amongst which the active component is ruthenium metal, the dressing agent is a metal oxide, and the precursor is selected from the nitrate or chloride of metal elements in IIA main group, VIII group and IVA main group in the element periodic table; ruthenium and the dressing agent are uniformly carried on the carrier L through the preparation method of the invention. When being used in preparing cyclohexene from benzene through selectively hydrogenation reaction, and compared with the catalyst used for the selectively hydrogenation of industrial benzene, the catalyst has the advantages that: lower the ruthenium consumption, higher selectively hydrogenation activity and selectivity for benzene.
Owner:FUDAN UNIV

ZIF-8 material-based hydrogenation catalyst and synthetic method thereof

The invention relates to a ZIF-8 material-based hydrogenation catalyst and a synthetic method thereof. The synthetic method particularly comprises the following steps: (1) dissolving zinc nitrate, 2-methylimidazole and a surface active agent with methanol, carrying out stirring reaction for 1-6h at 20-60 DEG C, and standing for 10-18h to obtain a turbid solution; (2) carrying out centrifugal treatment on the turbid solution, placing sediments in a drying oven to be dried to obtain a ZIF-8 carrier after washing with methanol; and (3) dissolving transition metal salt with water, dipping the ZIF-8 carrier into the dissolved transition metal salt, and roasting in a muffle furnace to obtain the ZIF-8 material based hydrogenation catalyst. The hydrogenation catalyst can be used for preparing biodiesel; the biodiesel preparation method comprises the steps of placing the ZIF-8 material based hydrogenation catalyst into a fixed bed reactor to be reduced, and introducing vegetable oil into the reactor for hydrocracking reaction at 300-400 DEG C under the conditions that the hydrogen partial pressure is 2-4MPa, the air speed is 0.9-3.6h<-1> so as to obtain the biodiesel finally. The catalytic efficiency of the synthesized ZIF-8 material based hydrogenation catalyst is improved by dozens of times compared with the catalytic efficiency of a traditional aluminum oxide catalyst.
Owner:BEIJING FORESTRY UNIVERSITY

Method for preparing nano zinc oxide using shell powder as carrier

The invention discloses a preparation method of nanometer zinc oxide which takes shell powder as a carrier, and in particular relates to a reproducible porous nanometer zinc oxide powder which takes the shell powder as the carrier and the preparation method thereof. In the preparation method, zinc oxide is loaded by impregnation on the shell powder carrier; firstly, zinc salt solution with appropriate concentration is prepared, and then an activated shell powder carrier is impregnated in the zinc salt solution by certain proportion, and then the obtained solution is stirred and stayed for a certain time, and treated by low temperature and abstersion pretreatment and finally roasted at high temperature, so the nanometer zinc oxide forms high-strength bond with the shell powder and promotes the catalytic activity of the nanometer zinc oxide at the same time. Impregnation can be conducted for a plurality of times to increase load. The nanometer ZnO is characterized by small particle size, good compatibility with materials, high catalytic efficiency, good stability, good regenerability, and the like, and can be applied to the fields of plastics, rubbers, fibers, coatings, home appliances, paints, ceramics, water and environment treatment, pharmaceutical and hygienic articles, etc. In terms of sources of raw materials and production technology, the preparation method not only reduces the production cost of nanometer ZnO catalyst but also is helpful for disposal of the increasingly serious environmental problems, thus bearing great environmental protection significance.
Owner:GUANGDONG OCEAN UNIVERSITY

Method for carrying out surface modification on quantum dot/rod, preparation of photosynthetic catalyst as well as system and method

ActiveCN103055954AEasy to operateStable photosynthetic hydrogen productionCatalyst carriersHydrogenPtru catalystHigh activity
The invention relates to a method for carrying out surface modification on a quantum dot / rod, preparation of a photosynthetic catalyst as well as a system and a method. The surface modification is carried out on the quantum dot / rod, and the quantum dot / rod is simply and rapidly used as a carrier; and metal ions which are used as catalytic activity sites are further key-bonded and assembled on the surface of the quantum dot to prepare a high-activity photosynthetic hydrogen-producing photocatalyst and prepare hydrogen. According to the method for carrying out the surface modification on the quantum dot / rod, the preparation of the photosynthetic catalyst as well as the system and the method disclosed by the invention, high-efficiency photosynthetic hydrogen production can be realized by the simple, low-cost and stable photocatalyst; complicated and unstable catalytic activity centers which is natural or artificially-simulated and the like do not need so as to avoid complicated synthesis and system construction; and the method disclosed by the invention has the advantages of efficient reaction, simplicity in reaction, low cost and practical applicability, and provides an effective way for effectively reducing the photosynthetic hydrogen production cost and improving the catalytic efficiency.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Graphite-phase nitrogen carbide nanosheet/cobaltosic oxide nanosheet composite nanomaterial of scale-shaped structure and preparation method and application thereof

The invention aims at providing a method for synthesizing a scale-shaped graphite-phase nitrogen carbide nanosheet/cobaltosic oxide nanosheet composite material and belongs to the technical field of material preparation and catalysis. The composite material is prepared from the raw materials of functionalized graphite-phase nitrogen carbide and cobalt salt through a hydrothermal method at high temperature. The prepared scale-shaped two-dimensional nitrogen carbide nanosheet/cobaltosic oxide nanosheet composite material is in morphology that a scale-shaped cobaltosic oxide nanosheet nanocomposite material evenly grows on the surface of a two-dimensional nitrogen carbide nanosheet. Compared with a traditional pure two-dimensional nitrogen carbide nanomaterial, the specific surface area of the material and the screening capacity of the material to a catalytic substrate are effectively improved, and the material has more efficient photocatalytic performance. The preparation method has the advantages of simple technology, low cost and high catalytic efficiency; the prepared material has efficient carbon dioxide reducing capacity, and thus has good application prospect in the photocatalysis field of environmental modification, greenhouse gas elimination and the like.
Owner:FUJIAN MEDICAL UNIV

Three-dimensional molybdenum disulfide nanoflower-graphene composite material and application thereof

The invention discloses a preparation method for a three-dimensional molybdenum disulfide nanoflower-graphene composite material and application of the three-dimensional molybdenum disulfide nanoflower-graphene composite material as an electrochemical hydrogen evolution catalyst. According to the invention, the three-dimensional molybdenum disulfide nanoflower-graphene composite material is prepared through a one-step hydrothermal method; and the obtained composite material is used to modify a glassy carbon electrode after ultrasonic dispersion so as to obtain a three-dimensional molybdenum disulfide nanoflower-graphene composite material modified electrode. The three-dimensional molybdenum disulfide nanoflower-graphene composite material is mainly applied to electrochemical hydrogen evolution; and a linear scanning curve (polarization curve) is used to detect the catalytic activity of the synthesized molybdenum disulfide nanoflower-graphene composite material, and a cyclic voltammetry curve is employed for testing the stability of the molybdenum disulfide nanoflower-graphene composite material. According to the invention, synergism of molybdenum disulfide nanoflower and graphene in the three-dimensional molybdenum disulfide nanoflower-graphene composite material is made full use of to improve the catalytic efficiency of electrochemical hydrogen evolution and to effectively enhance the stability of the catalyst so as to allow the catalyst to be used in an acidic environment for a long time.
Owner:远科秦皇岛节能环保科技开发有限公司

Ozone-catalytic functional ceramic membrane, preparation method thereof and circulating coating device

The invention discloses an ozone-catalytic functional ceramic membrane, a preparation method thereof and a circulating coating device, relates to the technical field of membrane material preparation, and aims at solving the problems that the ozone-catalytic efficiency of the existing ceramic membrane is low, the integration of membrane filtration and ozone-catalytic functions cannot be realized, membrane pollution cannot be effectively relieved and the like. By using a tubular ceramic membrane as a carrier, single-component or multi-component metal oxides are loaded through an impregnation method, then manganese oxide dipping coating solution is prepared, and a catalytic coating layer is prepared on the surface of the membrane through a layer-by-layer dipping coating method. The invention aims at establishing a stereoscopic multistage catalyst system, simultaneously improving the catalytic efficiency of the separation layer and supporting layer of the ceramic membrane and enabling an ozone-catalytic effect to seep into the entire ceramic membrane to fully realize the overall catalytic effect. Compared with other metal oxides, manganese oxide has better adsorption and ozone-catalytic capacities, and while the ozone-catalytic capacity is improved, the membrane pollution is effectively relieved and the integration of multiple functions such as pollutant adsorption, ozone-catalytic oxidization and membrane separation is realized.
Owner:HARBIN INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products