Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1227 results about "Nitrophenol" patented technology

Nitrophenols are compounds of the formula HOC₆H₅₋ₓ(NO₂)ₓ. The conjugate bases are called nitrophenolates. Nitrophenols are more acidic than phenol itself.

Microporous-mesoporous molecular sieve containing noble metal, preparation method and application to catalytic reduction of p-nitrophenol

The invention belongs to the technical field of molecular sieve preparation, and particularly relates to an in-situ preparation method for a microporous-mesoporous molecular sieve containing noble metal. The in-situ preparation method comprises the steps as follows: adding a coupling pore-forming agent, a silicon source, an aluminum source or a titanium source, and an alkali source into a water solution of noble metal nano particles in sequence under the water bath condition; and ageing, drying, crystallizing, drying and carrying out high-temperature calcination to obtain the microporous-mesoporous molecular sieve containing the noble metal. The prepared microporous-mesoporous molecular sieve is provided with a hierarchical pore structure; the noble metal nano particles with high dispersity are covered in situ while a mesoporous structure is generated; and a synthetic method is convenient and simple, saves energy and reduces emission. A multifunctional catalyst prepared with the method integrates the advantages of the microporous channels of the molecular sieve, the transgranular meso pores and the intergranular meso pores of the molecular sieve and the noble metal nano particles, and is more suitable for catalytic reactions of sulfur-containing large molecules such as hydrogen desulfurization and the like.
Owner:JILIN UNIV

Chemical industrial waste salt refining process

The invention relates to a chemical industrial waste salt refining process which comprises the following steps: pretreating high salt wastewater generated in the production process of aminobenzene ether and p-nitrophenol so as to adjust the pH value, adsorbing by using activated carbon, kieselguhr or macroporous resin, removing organisms and organic salts in the wastewater, reducing the COD of the wastewater, neutralizing the high salt wastewater, performing multi-effect evaporation or mechanical recompression so as to evaporate and crystallize, and centrifuging a solid salt; performing high-temperature calcination on the centrifuged solid salt in a rotary kiln or a tunnel kiln, thereby decomposing and oxidizing the organisms at a high temperature, further thoroughly combusting the tail gas generated through calcination in a heat accumulation type tail gas combustion furnace, preheating and recycling the tail gas, performing spraying absorption, dissolving the calcinated salt with water so as to prepare a saturated solution, filtering by using a precise filter, directly supplying the filtrate to ionic membrane caustic soda for use, or performing multi-effect evaporation or mechanical recompression on the filtered saturated salt water so as to evaporate, crystallize and purify, and performing centrifugation, thereby obtaining high-quality solid sodium chloride.
Owner:JIANGSU ZHONGDAN GROUP

Preparation method for photocatalyst for treating nitrophenol wastewater and treatment method for nitrophenol wastewater

The invention provides a preparation method for a photocatalyst for treating nitrophenol wastewater and a treatment method for the nitrophenol wastewater. Compared with the prior art, the preparation method and the treatment method have the advantages that by modification of ZSM-5, the hole diameter of a molecular sieve is enlarged, more mesoporouses are provided, and the specific surface area and the hole capacity are enlarged; a secondary mesoporous molecular sieve (ZSM5) is prepared; nano TiO2 is synthesized by a sol-gel method and is loaded on the ZSM5 to prepare a composite catalyst with high performance; meanwhile, peroxysulphate is added in order to solve the problem that independent UV/TiO2 is low in oxidization capacity, so that a sulfate radical anion is generated by peroxysulphate under UV excitation and can develop higher oxidization capacity under cooperation with -OH. According to the preparation method and the treatment method, the photocatalysis action of nano TiO2/mesoporous ZSM-5 and the advanced oxidation action of the sulfate radical anion are combined, so that the photocatalysis treatment efficiency is improved, the treatment cost is reduced, and the characteristics of repeated use and green high efficiency are achieved.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY AND SCIENCE

Preparation method of molecularly imprinted polymeric microspheres for 2,4,6-trinitrophenol detection

The invention discloses a preparation method of molecularly imprinted polymeric microspheres for 2,4,6-trinitrophenol detection. The preparation method is characterized in that polynitrophenol derivatives-imprinted molecules generated through reaction between 2,4,6-trinitrophenol and N,N'-diisopropyl carbodiimide have luminous yellow fluorescent light, the fluorescent light of the imprinted molecules has open and close characteristics under an acid-base condition, the imprinted molecules located in an imprinting layer of the molecularly imprinted polymeric microspheres can be eluted, a hole structure which is complementary with the structure, the size and the functional groups of the imprinted molecules is formed in the imprinting layer, polymeric microspheres of which the imprinted molecules are eluted have specific recognition sites on target analyte molecules, target molecules enter the specific recognition sites, selective recognition on the target analyte molecules is realized, sensitivity detection of the target analyte molecules can be realized through opening and closing of the fluorescent light of the target molecules, the specific surface area of the molecularly imprintedmicrospheres is large, and space in which the recognition sites are formed is stable in structure, has more effective sites, and is capable of carrying out high-selective recognition and high-sensitive detection on the target molecules.
Owner:霍尔姆斯(北京)生物科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products