Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1101 results about "Zno nanoparticles" patented technology

Nanoparticle zinc oxide, ZnO, is a form of zinc oxide where the compound is formed into individual particles as small as 20 nanometers in diameter. The transparent particles, which effectively filter out ultraviolet-a (UVA) and ultraviolet-b (UVB) light, are then coated with inert silicon or aluminum oxide...

Method for preparing nano zinc oxide using shell powder as carrier

The invention discloses a preparation method of nanometer zinc oxide which takes shell powder as a carrier, and in particular relates to a reproducible porous nanometer zinc oxide powder which takes the shell powder as the carrier and the preparation method thereof. In the preparation method, zinc oxide is loaded by impregnation on the shell powder carrier; firstly, zinc salt solution with appropriate concentration is prepared, and then an activated shell powder carrier is impregnated in the zinc salt solution by certain proportion, and then the obtained solution is stirred and stayed for a certain time, and treated by low temperature and abstersion pretreatment and finally roasted at high temperature, so the nanometer zinc oxide forms high-strength bond with the shell powder and promotes the catalytic activity of the nanometer zinc oxide at the same time. Impregnation can be conducted for a plurality of times to increase load. The nanometer ZnO is characterized by small particle size, good compatibility with materials, high catalytic efficiency, good stability, good regenerability, and the like, and can be applied to the fields of plastics, rubbers, fibers, coatings, home appliances, paints, ceramics, water and environment treatment, pharmaceutical and hygienic articles, etc. In terms of sources of raw materials and production technology, the preparation method not only reduces the production cost of nanometer ZnO catalyst but also is helpful for disposal of the increasingly serious environmental problems, thus bearing great environmental protection significance.
Owner:GUANGDONG OCEAN UNIVERSITY

Preparation method of nanometer zinc oxide-bamboo charcoal composite particle with antibacterial and adsorption functions

The invention relates to a preparation method of nanometer zinc oxide-bamboo charcoal composite particle with antibacterial and adsorption functions. The preparation method comprises the following steps: (1) adding a bamboo raw material into a mixed acid solution, reacting at 50-90 DEG C for 1-20 hours, adding alkali liquor to neutralize the solution after the reaction to obtain a carboxylated bamboo cellulose nanocrystals; (2) adding the carboxylated bamboo cellulose nanocrystals into a solution of 0.005-5 mol/L zinc ions, adding alkali liquor to neutralize, diluting the reaction product through deionized water, centrifuging and freeze drying or vacuum drying the reaction product, and then, vacuum calcining the reaction product at 200-600 DEG C for 1-8 hours to obtain the nanometer zinc oxide-bamboo charcoal composite particle. The process disclosed by the invention is simple, convenient, easy to operate and free of environmental pollution, and the preparation period of the composite particle is shortened; the prepared nanometer zinc oxide-bamboo charcoal composite particle is small in size, easy to regulate and control and large in specific surface area, the bamboo charcoal is very firmly combined with the nanometer zinc oxide, so that the antibacterial effect is durable, and the nanometer zinc oxide-bamboo charcoal composite particle has good adsorption capacity on toxic substance, thereby having a wide application prospect.
Owner:ZHEJIANG SCI-TECH UNIV +1

Zinc metallic coating

The invention discloses a zinc metal coating layer, the zinc metal coating is characterized in that when being calculated according to the parts by weight, the components of the the zinc metal coating are as follows: 50 parts to 100 parts of polyether silicate ester or polymerized silica acid ester, 50 parts to 100 parts of polyvinyl butyral or ethyl cellulose, 1 part to 20parts of one or a plurality of component (s) among nanometer silicon dioxide, nanometer titanium dioxide, nanometer molybdenum dioxide, or nanometer zinc oxide, 80 parts to 200 parts of zinc powder, 0 to 20 parts of rust preventing agent,, 5 parts to 100 parts of coupling agent, 5 parts to 25 parts of brightening agent, 8 parts to 250 parts of film forming auxiliary agent, 5 parts to 10 parts of wettinh agent, 1 part to 5 parts of surface activating agent, 100 parts to 200 parts of thinning agent, 0.5 part to 3 parts of anti-foaming agent and 0.5 part to 5 parts of anti-scratching agent. The bright metal zinc coating layer related by the invention can be taken as the anti-corrosive oxidation resistant zinc metal coating layer of metal product, particularly the black metal product, which can replace the commonly adopted galvanizing technology. The bright zinc metal coating layer of the invention can very conveniently and effectively paint a zinc metal coating layer the binding of which is firm on the metal product, particularly the black metal product.
Owner:胡仲寅

Anion easy-cleaning functional ceramic additive and preparation method thereof, ceramic prepared by using additive and preparation method thereof

ActiveCN104129996AEasy to cleanObvious oleophobicClaywaresDecompositionZno nanoparticles
The invention belongs to the technical field of ceramics, and particularly relates to an anion easy-cleaning functional ceramic additive and a preparation method thereof, a ceramic prepared by using the additive and a preparation method thereof. The additive is prepared from the following raw materials in percentage by mass: 10-16% of Chongguang stones with a particle size of 5-20 microns, 16-25% of tourmaline with a particle size of 5-15 microns, 5-15% of copper pectolite with a particle size of 5-20 microns, 8-12% of nano titanium dioxide, 6-8% of nano zinc oxide, 5-10% of lead-free frits, 7-20% of rare earth materials, 8-10% of superfine alumina, 8-15% of superfine quartz powder and 5-10% of sodium carbonate. The preparation method of the additive comprises the following steps of carrying out mixed ball-milling on the lead-free frits, the rare earth materials, the superfine alumina, the superfine quartz powder and the sodium carbonate firstly; and then, adding the Chongguang stones, the tourmaline, the copper pectolite, the nano titanium dioxide and the nano zinc oxide into the obtained product, and ball-milling the obtained mixture, so that the additive with a particle size of 1-10 microns is obtained. The additive disclosed by the invention has a self-polarizing performance, and has strong adsorption and decomposition functions, so that negative ions are produced; and after the additive is added into a ceramic, the ceramic is extremely easy to clean and not stained, and has no hidden dirt, therefore, the ceramic has a strong affinity to water.
Owner:ZIBO BAIKANG ECONOMIC & TRADE

Inorganic nanoparticles-modified polyurethane sponge mask material, and preparation method and application thereof

InactiveCN102190882ARegular 3D network structureRegular three-dimensional network structure, poresProtective garmentFiberCarbon fibers
The invention provides an inorganic nanoparticles-modified polyurethane sponge mask material and a preparation method thereof, and also provides application of the inorganic nanoparticles-modified polyurethane sponge mask material in manufacturing a mask. In the invention, the inorganic nanoparticles used for modifying sponge comprise magnetic Fe3O4 nanoparticles, magnetic Fe2O3 nanoparticles, TiO2 nanoparticles, ZnO nanoparticles, mesoporous SiO2, carbon nanotubes and carbon fibers. The inorganic nanoparticles have the advantages of small particle size, large specific surface area, strong adsorption performance and like and contain charges on the surfaces, and a plurality of the nanoparticles have strong ultraviolet absorption capability, photocatalytic activity, and antibacterial and antiviral actions. The inorganic nanoparticles-modified polyurethane sponge mask material provided by the invention has high efficiency and capability in filtering out sub-micron dust, viruses and bacteria, has the function of adsorbing poisonous and harmful gases, has the characteristics of small gas absorption resistance, simple preparation method, low cost and broad application future, and can be recycled through water washing.
Owner:HUAZHONG UNIV OF SCI & TECH

Core-shell zinc oxide-silica nanoparticle, and preparation method and application thereof

The invention specifically relates to a core-shell zinc oxide-silica nanoparticle, and a preparation method and application thereof, belonging to the technical field of nano-materials. The method comprises the following steps: subjecting lithium hydroxide and zinc methacrylate to hydrolysis at room temperature to produce luminous ZnO nanoparticles, adding siloxane monomers containing double bonds and azodiisobutyronitrile, carrying out heating to initiate polymerization so as to form a single organosilicon layer on the surface of the ZnO nanoparticles, then adding other siloxane and ammonia water, and carrying out hydrolysis at room temperature to form a silicon dioxide layer so as to prepare the core-shell zinc oxide-silica nanoparticles. The core of a core-shell zinc oxide-silica nanoparticle is a single zinc oxide luminous quantum dot and has a diameter of 2.7 to 4.6 nm; the shell of the nanoparticle is a thin silica layer; and the core-shell zinc oxide-silica nanoparticle is safe and nontoxic, has high quantum efficiency, stably emits light under continuous UV excitation in cells, can be used for preparing fluorescent labels for biological cells and is especially applicable to preparation of fluorescent labels for cervical carcinoma cells.
Owner:FUDAN UNIV

Method for preparing nano zinc oxide and crystal whisker zinc oxide by using industrial zinc sulfate as raw material

The invention relates to a method for preparing nano zinc oxide and crystal whisker zinc oxide by using industrial zinc sulfate as a raw material, which belongs to the technical field of preparation of inorganic chemical materials. The method uses a simulated industrial zinc sulfate solution containing impurities of manganese and magnesium as the raw material, and comprises the following steps: firstly, removing the manganese by adopting an oxidation method, and separating the magnesium and zinc by adopting a neutral complex magnesium-dissolving and zinc-depositing mode so as to prepare a precursor of a nano zinc salt; and secondly, preparing the crystal whisker zinc oxide with a regular shape by using a hydrothermal orientated growth method, or preparing high-purity nano zinc oxide by using a roasting method. The method well meets the prior zinc wet method metallurgical process, and has the advantages of clean and simple process, good impurity removing effect, high zinc total yield, low cost, excellent product performance, high added value and easy industrial popularization. The nano zinc oxide and the crystal whisker zinc oxide prepared by the method have regular shapes and uniform grain size, and can be used as functional packing materials or reinforcing materials applied to the fields of alloy, resin, rubber, ceramics, plastics, coatings, electronics and the like.
Owner:TSINGHUA UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products