Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

4257 results about "Esterification reaction" patented technology

Esterification Definition. Esterification is an equilibrium reaction to form ester mainly from alcohols and carboxylic acids. Esters can also be made from the reactions between acyl chlorides (acid chlorides) and alcohols, and from acid anhydrides and alcohols. Here carboxylic acid and alcohol reacts to form an ester.

Preparation method of star polycarboxylic acid high-performance water reducing agent

ActiveCN102887979AExtended Dionon Design-Structure-PropertyExpanding the theoretical connotation of the design-structure-performance of moleculesWater reducerPollution
The invention relates to a preparation method of a star polycarboxylic acid high-performance water reducing agent. Polybasic alcohol and (methyl) acrylic acid used as main raw materials for esterification are esterified and polymerized to prepare the star polycarboxylic acid high-performance water reducing agent material: the (methyl) acrylic acid and polybasic alcohol used as reactants are esterified under the action of a catalyst to firstly prepare a star polymerizable active terminal, and free-radical polymerization reaction is carried out with unsaturated polyethenoxy ether, molecular weight regulator and unsaturated carboxylic acid monomer under the action of an initiator to prepare the star polycarboxylic acid high-performance water reducing agent. The invention is easy to control, and has the advantages of high polymerization degree, low cost and no pollution; the esterification reaction is carried out form an active core, and the free-radical polymerization is carried out to generate the chain arm, thereby implementing the polycarboxylic acid high-performance water reducing agent in a star molecular structure; and under the condition of common doping amount and low doping amount, the star polycarboxylic acid high-performance water reducing agent has better cement paste flowability and holding capacity than the traditional linear and comb polycarboxylic acid water reducing agents, and has favorable cement adaptability and concrete application performance.
Owner:GUIZHOU DR SHI TECH

Method for preparing biocarbon solid acid catalyst and biodiesel

The invention pertains to the new material technical field, and relates to a method for preparing a carbonaceous solid acid catalyst and biodiesel by taking pure natural biological substances as raw materials. The method is characterized by: taking the pure natural and renewable biological substances as the raw materials; adopting the technical route and method of low-temperature carbonization firstly, oxidation secondly and sulfonation then according to the constituent and structural characteristics to prepare the bio-carbonaceous solid acid catalyst; and adopting a continuous rectification-water separating esterification reaction technology to produce the biodiesel by carrying out the catalytic esterification reaction of a free fatty acid or waste oil and short chain alcohol. The raw materials adopted by the invention are rich in resources, low in price, pure natural and renewable, which pertains to waste utilization; the preparation technology is simple with moderate and controllable reaction conditions; the catalyst has the advantages of high activity, good stability, easy recycling and no corrosion to equipment, which is an really environment-friendly catalyst, thus being applicable to the large scale industrial production of the biodiesel. The method can also be applied to a plurality of organic reactions such as alkylation, hydrolysis and hydration, etc.
Owner:DALIAN UNIV OF TECH

Polyester fibres and preparation method thereof

The invention relates to polyester fibres and a preparation method thereof. The raw material of the polyester fibres is modified polyester which consists of a terephthalic acid chain segment, an ethylene glycol chain segment and a branched chain-containing dihydric alcohol chain segment. The preparation method of the polyester fibres comprises the following steps: performing esterification reaction on terephthalic acid and branched chain-containing dihydric alcohol under the catalysis of concentrated sulphuric acid to obtain terephthalic acid dihydric alcohol ester; then, preparing the terephthalic acid and the ethylene glycol into slurry, and performing the esterification reaction on the slurry to obtain the terephthalic acid ethylene glycol ester; finally, stirring and mixing the terephthalic acid dihydric alcohol ester and the terephthalic acid ethylene glycol ester, and performing condensation polymerization in a low vacuum stage and a high vacuum stage under the action of a catalyst and a stabilizing agent to obtain modified polyester; metering, extruding, cooling, oiling, stretching, heat-setting and winding the polyester to prepare the polyester fibres. The increasing amplitude of the spatial gaps of the polyester fibres is much higher than that of branched chain-free polyester fibres at the same temperature, which is beneficial to the degree of micro particles, such as a dye, that enter the polyester; the dyeing rate is improved.
Owner:JIANGSU HENGLI CHEM FIBER

Method for preparing fish oil ethyl ester microcapsule from fish pomace

The invention relates to a method for preparing a fish oil ethyl ester microcapsule from fish pomace, which mainly comprises the extraction of fish oil, the preparation of fish fatty acid ethyl ester, the purification of fish oil ethyl ester and the preparation of a fish oil ethyl ester microcapsule, wherein the extraction of fish oil comprising the following steps: eliminating foreign matters from fish viscus, cleaning, mashing, adding pepsin and neutral protease for enzymolysis, then adding anhydrous alcohol, standing to stratify, and centrifuging to obtain the fish oil; the preparation of fish fatty acid ethyl ester comprising the following steps: mixing the fish oil with ethanol, making the mixture to be subject to an esterification reaction under the catalysis of sodium ethylate, vaporizing the ethanol, washing with water, and then centrifuging to obtain the fish oil ethyl ester; in the purification process, supercritical CO2 extraction is adopted, the purified fish oil ethyl ester is a golden yellow transparent liquid, and EPA ethyl ester and DHA ethyl ester contents thereof are more than 50%; and the preparation of a fish oil ethyl ester microcapsule comprises the following steps: mixing sodium alginate, maltodextrin and sodium caseinate, dissolving in water, adding the purified fish oil ethyl ester, and adopting a spray drying method to obtain the powdered fish oil ethyl ester microcapsule which can hide the fishy smell of the fish oil ethyl ester, improve the mouth feel and be beneficial to packaging and storage.
Owner:DALIAN POLYTECHNIC UNIVERSITY

A kind of purification process of glufosinate-ammonium

ActiveCN102268037AThe purification process steps are simpleLow Inorganic Salt ContentGroup 5/15 element organic compoundsEpoxySolvent
The invention discloses a process for purifying glufosinate-ammonium, which comprises: (1) adding glufosinate-ammonium hydrochloride into an alcohol R1OH to perform an esterification reaction, and after the reaction is accomplished, cooling, filtering, removing solvent from filtrate and obtaining ester product of glufosinate-ammonium; (2) adding the ester product of glufosinate-ammonium, which isobtained by step (1), into water solution of hydrochloric acid to perform a hydrolysis reaction, and obtaining glufosinate-ammonium hydrochloride by post treatment; (3) adding the glufosinate-ammonium hydrochloride obtained by the step (2) into an alcohol R2OH, introducing epoxy ethane and obtaining glufosinate-ammonium acid; and (4) adding the glufosinate-ammonium acid obtained by the step (3) into an alcohol R3OH, introducing ammonia gas, and obtaining glufosinate-ammonium after the reaction is finished. In the invention, the process for purifying glufosinate-ammonium comprises simple steps, the inorganic salt content in the obtained glufosinate-ammonium is low, and the purity of the obtained glufosinate-ammonium is high; the process for separating glufosinate-ammonium hydrochloride from HCl by epoxy ethane is more economic than the conventional process which adopts epoxypropane and epoxy chloropropane; and the method is very safe and has a very bright industrialization prospect.
Owner:YONGNONG BIOSCI

Method for preparing low-melting-point polyester composite fiber by adopting continuous polymerization and melt direct-spinning

The invention relates to a method for preparing a modified copolyester composite fiber, in particular to a method for preparing a low-melting-point polyester composite fiber by adopting continuous polymerization and melt direct-spinning. The method comprises the following steps: slurry is prepared from raw materials in proportion and added continuously into an esterification system for an esterification reaction, an obtained oligomer is uniformly mixed with polyether, the mixture enters a homogenizing kettle for transesterification and pre-polycondensation, a product is uniformly mixed with a chain extender for final polycondensation, and an obtained low-melting-point polyester melt and a common polyester melt enter a composite spinning assembly to prepare the low-melting-point polyester composite fiber which comprises a common polyester core layer and a low-melting-point polyester cortex layer. The method has the advantages as follows: a side reaction of thermal degradation of polyether components is inhibited effectively, and the color and spinnability of the low-melting-point polyester melt are improved; the problem of poor performance of composite spinning of the low-melting-point polyester on the cortex layer and the common polyester on the core layer due to large dynamic viscosity difference of the melt is solved, and the composite fiber is well formed; the production efficiency of the low-melting-point polyester composite fiber is improved.
Owner:CHINESE TEXTILE ACAD

Hyperbranched polyester modified acrylic resin and preparation method thereof

The invention relates to hyperbranched polyester modified acrylic resin and a preparation method thereof. Firstly, a By-type polyhydroxylated compound is taken as nuclear molecules (wherein B represents hydroxyl, and the degree of functionality y of B is larger than of equal to 2), ABx-type polyhydroxy acid is taken as divergence molecules (wherein A represents carboxyl, B represents hydroxyl and x represents the degree of functionality of hydroxyl and is larger than or equal to 2), a polyester-type hyperbranched polymer with hydroxyl at the terminal is obtained through a vacuum fusion polycondensation method, and esterification reaction is performed on prepared hyperbranched polyester and acrylic resin with carboxyl in the presence of a water-carrying agent to obtain hyperbranched polyester modified acrylic resin. Acrylate with hyperbranched polyester introduced enriches a great amount of hydroxyl, and is taken as a cross-linking group to greatly reduce the curing time of a coating film; and at the same time, hyperbranched polyester has excellent performance of dendritic polymer, molecular chains are not easily twisted, and hyperbranched polyester modified acrylic resin with high solidity and low viscosity can be obtained. According to the invention, the source of raw materials is wide, the price of the raw materials is low, the synthetic method is simple, the controllability is good, and the production cost is low.
Owner:ETERNAL CHEM (CHINA) CO LTD

Transparent, highly heat-resistant polyimide precursor and photosensitive polyimide composition thereof

The present invention relates to an aqueous alkali-developable photosensitive polyimide precursor resin composition that is appropriate for highly heat-resistant transparent protection layers and insulation layers for liquid crystal display devices. In more detail, the present invention relates to a negative-type photosensitive transparent polyimide precursor resin composition manufactured in two steps. The first step is the manufacture of a transparent linear polyamic acid (A) from (a-1) one or more kinds of tetracarboxylic acid dianhydrides selected from alicyclic tetracarboxylic acid dianhydrides having 3 to 30 carbon atoms; and (a-2) one or more kinds of diamines selected from aliphatic, alicyclic, or non-conjugated aromatic diamines, having 3 to 30 carbon atoms, having one or more ethylenically unsaturated bonds at side chains as essential components; and the second step is the manufacture of reactive transparent polyimide precursors shown in the following Chemical Formula 1 according to the esterification reaction of the above polyamic acid (A) with ethylenically unsaturated compound (B) containing an epoxy group in the same molecule as the main component. The photosensitive transparent polyimide precursor resin compositions according to the present invention have a superior photosensitivity, and thus, may be used for transparent protection layers and insulation layers of liquid crystal display devices having superior heat resistance, chemical resistance, mechanical strength, and electricity insulation.
Owner:LG CHEM LTD

Technology and device system for producing dimethyl oxalate by high-pressure carbonylation of industrial synthesis gases and producing ethylene glycol through dimethyl oxalate hydrogenation

The invention relates to a technology and a device system for producing dimethyl oxalate by high-pressure carbonylation of industrial synthesis gases and producing ethylene glycol through dimethyl oxalate hydrogenation. The technology comprises the following steps: adopting industrial NO, O2 and methanol as raw materials for an esterification reaction to produce methyl nitrite; adopting industrial CO and methyl nitrite for a carbonylation reaction in a plate reactor to produce carbonylation products, which mainly include dimethyl oxalate and dimethyl carbonate; separating the carbonylation products to obtain dimethyl carbonate products; subsequently adding hydrogen into dimethyl oxalate in the plate reactor to produce ethylene glycol products; conducting the coupling recovery treatment on waste acids in the esterification reaction and purge gases in the carbonylation reaction for recycling. The device system comprises an esterification reaction system, a carbonylation reaction system, a coupling recovery system for purge gases and waste acids and a hydrogenation reaction system. The technology has the characteristic that device consumption is remarkably reduced, and particularly the nitric acid waste liquid recycling and purge gas recycling technologies as well as the separation technologies thereof are highly coupled; recycling of the raw materials in reaction waste gases is realized, and the effect is remarkable.
Owner:SHANGHAI WUZHENG ENG TECH CO LTD

Method for continuously preparing modified polyester

The invention relates to a method for continuously preparing modified polyester, comprising the following steps: conveying PET AND EG to an esterification autoclave from a feed port for esterification reaction, so as to obtain terephthalic acid ethylene glycol low polymer; then inputting the low polymer melt to a polycondensation autoclave through a pipeline for polymerization reaction with SIPM or multi-simplexes and addition agent, thus obtaining modified polyester melt and then carrying out granulation or direct spinning; wherein the two ends of the pipeline are respectively connected with the esterification autoclave and the polycondensation autoclave, when the low polymer melt flows through the pipeline, ethylene glycol solution of the SIPM or multi-simplexes and addition agent are added to the pipeline and mixed evenly with the low polymer melt in the pipeline, meanwhile the later-stage esterification reaction is carried out, and the mixture enters the polycondensation autoclave for polymerization reaction. With the method of the invention adopted, continuous industrialized production is realized, production cost is greatly reduced; in addition the SIPM or multi-simplexes with special groups are evenly distributed on the backbone of the polyester, as a result, high quality modified polyester products can be obtained for sure in the later stage.
Owner:SHANGHAI JUYOU CHEM ENG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products