Formaldehyde free binder

a binder composition and formaldehyde-free technology, applied in the field of new formaldehyde-free binder compositions, can solve the problems of heightened risk of incurring accelerated corrosion of process equipment associated with storage, transportation, and application of binder compositions, and the potential for formaldehyde emissions during the preparation of adhesive resins

Active Publication Date: 2007-12-20
GEORGIA PACIFIC CHEM LLC
View PDF47 Cites 65 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

One of the drawbacks of this technology, however, is the potential for formaldehyde emissions during the preparation of the adhesive resin, during the manufacturing of the fiberglass insulation and during its subsequent use.
One of the challenges to developing suitable alternatives, however, is to identify formulations that have physical properties (viscosity, dilutability, etc.) and other characteristics similar to the standard PF and PFU resins, i.e., formulations which also have a similar cure

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Formaldehyde free binder
  • Formaldehyde free binder

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0082]To a standard resin kettle was added MEA (monoethanolamine—12 g) and DEA (diethanolamine—50 g) and SMA-1000 (from Sartomer) in an amount of 50 g. An exothermic reaction occurred in the mixture (an IR taken of the sample at this point, after about 30 minutes of reaction, showed the presence of a secondary amide). Another 150 g of the SMA-1000 then was added to the reaction mixture, followed by 730 g of water. The reaction mixture was heated to 90° C. for about 2 hours and a clear solution was obtained. The pH of the aqueous resin was 4.5. The pH of the resin was then raised to above 5.5 by the addition of aqueous (28% by weight) ammonia. The resulting resin product, when heated to about 200° C. in an oven showed good cure characteristics. An IR spectrum taken of the cured resin product showed the presence of ester, amid and imide groups.

example 2

[0083]To a standard resin kettle was added 600 g of SMA-1000, 1000 g of water, and 40 g of MEA (monoethanolamine). An exothermic reaction occurred in the mixture. An IR of the sample at this point, after about 30 minutes of reaction time, showed the presence of a secondary amide. At this point, 200 g of TEA then was added. The reaction mixture was heated to 90° C. for about 2 hours after which an additional 600 g of water was added and a clear solution was obtained. The pH of the aqueous resin was at 4.7. The pH of the resin was then raised to above 7.0 by the addition of aqueous ammonia. The IR spectrum of this aqueous resin solution following the neutralization showed the presence of amide and a minor amount of imide and carboxylate salt. The resin product was heated to about 200° C. in an oven and showed good thermosetting characteristics. The IR spectrum of the cured thermoset resin showed the presence of ester, amid and imide groups.

example 3

[0084]To a pressure reactor (Parr) were added 1500 g of water, 150 g of a high molecular weight SMA (Styrene:MA mole ratio of approximately 3:1), 15 .g of monoethanolamine (MEA), 20 g of aqueous ammonia (28%), and 40 g of additional water. The reactor was then sealed and heated to about 105° C. at which time the internal pressure had risen to about 10 psi. The contents of the reactor were held at this condition under constant stirring until all of the SMA had dissolved and the solution had reached a constant solids content (approximately 9.8%). An IR spectrum of the product at this point showed the presence of amide and carboxylate functionality. The product cured to a clear thermoset upon heating to 210° C. for 10 minutes.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Substance countaaaaaaaaaa
Login to view more

Abstract

An aqueous, formaldehyde-free binder composition comprising a modified copolymer of maleic anhydride and a vinyl aromatic compound such as styrene, the copolymer being modified by reaction with a primary alkanolamine, such as monoethanolamine (MEA), to produce a modified copolymer that is self-curing and cures as a consequence of cross-linking, esterification reactions between pendant carboxyls and hydroxyl groups on the solubilized (hydrolyzed) modified copolymer chains; the invention also relates to the corresponding method of using the binder composition for making fiber products, especially fiberglass insulation.

Description

FIELD OF THE INVENTION[0001]The present invention relates to a new formaldehyde-free binder composition, to the related method of its use for making fibrous products (including glass fiber products and especially fiberglass insulation), and to the fiber products themselves. The present invention specifically relates to an aqueous binder composition containing a modified copolymer of maleic anhydride and a vinyl aromatic compound such as styrene. The copolymer is modified by reaction with a primary alkanolamine (preferably monoethanolamine (MEA)). The modified copolymer is self-curing and cures as a consequence of cross-linking, esterification reactions between pendant carboxyls and hydroxyl groups on the solubilized (hydrolyzed) modified copolymer chains. Additional polyol(s), including diethanolamine and / or triethanolamine, can be added to the binder to increase either, or both the pH of the aqueous binder composition and the crosslink density of the cured binder.BACKGROUND OF THE ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): B05D3/02
CPCC03C25/26C03C25/28C08K5/17C08L2312/00C09D125/08C09D135/06H05K1/0366D04H1/641C08F8/32C08F222/08C08F8/44C08L25/08C08F212/08C08F222/06C08F8/14D04H1/587D04H1/64C08F8/48
Inventor SRINIVASAN, RAMJIGABRIELSON, KURTHINES, JOHN B.HAGIOPOL, CORNEL
Owner GEORGIA PACIFIC CHEM LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products