Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2480 results about "Copolyester" patented technology

Copolyester forms when modifications are made to polyesters, which are combinations of diacids and diols. For example, by introducing other diacids, such as isophthalic acid (IPA), or other diols, such as cyclohexane dimethanol (CHDM) to the polyester polyethylene terephthalate (PET), the material becomes a copolyester due to its comonomer content.

Wound healing polymer compositions and methods for use thereof

The present invention provides bioactive polymer compositions that can be formulated to release a wound healing agent at a controlled rate by adjusting the various components of the composition. The composition can be used in an external wound dressing, as a polymer implant for delivery of the wound healing agent to an internal body site, or as a coating on the surface of an implantable surgical device to deliver wound healing agents that are covalently attached to a biocompatible, biodegradable polymer and/or embedded within a hydrogel. Methods of using the invention bioactive polymer compositions to promote natural healing of wounds, especially chronic wounds, are also provided. Examples of biodegradable copolymer polyesters useful in forming the blood-compatible, hydrophilic layer or coating include copolyester amides, copolyester urethanes, glycolide-lactide copolymers, glycolide-caprolactone copolymers, poly-3-hydroxy butyrate-valerate copolymers, and copolymers of the cyclic diester monomer, 3-(S)[(alkyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione, with L-lactide. The glycolide-lactide copolymers include poly(glycolide-L-lactide) copolymers formed utilizing a monomer mole ratio of glycolic acid to L-lactic acid ranging from 5:95 to 95:5 and preferably a monomer mole ratio of glycolic acid to L-lactic acid ranging from 45:65 to 95:5. The glycolide-caprolactone copolymers include glycolide and ε-caprolactone block copolymer, e.g., Monocryl or Poliglecaprone.
Owner:MEDIVAS LLC

Biodegradable Packaging Film

A biodegradable packaging film is provided. The film is formed from a blend that contains a thermoplastic starch and polylactic acid. Starch is a relatively inexpensive natural polymer that is also renewable and biodegradable. Polylactic acid is likewise an inexpensive synthetic polymer that is biodegradable and renewable, yet also capable of providing increased tensile strength to the film. Although providing a good combination of biodegradability/renewability and increased tensile strength, the polylactic acid is also relatively rigid and can result in films having a relatively high stiffness (e.g., high modulus of elasticity) and low ductility. While more ductile than polylactic acid, the thermoplastic starch is often difficult to melt process in film forming processes and very sensitive to moisture and water vapor, reducing its ability to be used as a stand alone packaging film. In an effort to counteract the effect of such polymers, an aliphatic-aromatic copolyester is also employed in the blend of the present invention. While such copolyesters are biodegradable, they also possess the melt properties and ductility that lend them well to the formation of films. Although the combination of these polymers may achieve a good balance between biodegradability/renewability, high tensile strength, and good ductility (e.g., high peak elongation), it is still often difficult to achieve a precise set of mechanical properties as desired for packaging films. In this regard, the blend also contains a filler. Due to its rigid nature, the amount of the filler may be readily adjusted to fine tune the blend to the desired degree of ductility (e.g., peak elongation) and stiffness (e.g., modulus of elasticity).
Owner:KIMBERLY-CLARK WORLDWIDE INC

Full-biodegradable composite as well as preparation method and application of full-biodegradable composite

ActiveCN104479304AGood compatibilityImproved tear strength lowerPolymer scienceKaolin clay
The invention discloses a full-biodegradable composite as well as a preparation method and application of the full-biodegradable composite. The full-biodegradable composite comprises the following components: 5-40 parts of inorganic filler full-biodegradable masterbatches, 40-80 parts of biodegradable copolyester, 10-40 parts of polylactic acid and 0.1-5 parts of a compatilizer, wherein the inorganic filler full-biodegradable masterbatches comprise the following components: 20-80 parts of the biodegradable copolyester, 20-80 parts of inorganic filler, 0.1-10 parts of a lubricating agent and 0.1-5 parts of the compatilizer; and the inorganic filler is one or a combination of modified kaolin, modified white carbon black and modified montmorillonite. According to the full-biodegradable composite, the modified montmorillonite, the modified kaolin or the modified white carbon black is added as an enhancer, and an epoxy acrylic copolymer is introduced as the compatilizer, so that the compatibility of inorganic filler and matrix resin is enhanced, and the uniform dispersion is achieved; and the masterbatches are added into the matrix resin, so that the problem of relatively low tearing strength of a blend film and a sheet can be effectively improved.
Owner:KINGFA SCI & TECH CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products