Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2028 results about "Hydrogen atmosphere" patented technology

Method for preparing dihydric alcohol from lignocellulosic biomass

The invention relates to a method for preparing dihydric alcohol from lignocellulosic biomass, which has main steps of: 1, adding alkali liquor, acid liquor or water for pretreatment after lignocellulosic biomass crushing; 2, carrying out enzymolysis and concentrating liquid glucose filtered through enzymolysis after decoloration and ion exchange impurity removal; 3, adding catalysts with hydrogenation hydrogenolysis activity for carrying out hydrogenation hydrogenolysis reaction on the concentrated liquid glucose under the conditions of the pH being 8 to 14, the temperature being 130 to 250 DEG C and hydrogen atmosphere, separating the catalysts, and producing various dibasic alcohol with the carbon number being 2 to 6 after product rectification. The method utilizes the lignocellulosic biomass pretreatment-zymolyting glucose liquid as raw materials, and monosaccharide, soluble polysaccharides and sugar degradation products can respectively react, so both the efficiency and the process controllability can be greatly improved, and products can be independently used through separation and can be directly used for producing unsaturated polyester resin, polyurethane, fuel additives, surface active agents, emulsifying agents, motor vehicle antifreeze fluid and the like without depth separation.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

Method for forming bonded iron-based powder by high velocity compaction technology

The invention relates to a method for forming bonded iron-based powder by a high velocity compaction technology, and belongs to the technical field of powder metallurgy. Coarse and fine water-atomized iron powder with different particle sizes are matched, and the mass ratio of the coarse powder to the fine powder is 2:1 to 4:1. In accordance with the particle size matching requirement and the iron-based alloy composition ratio, Ni, Cu, C and iron-phosphorus alloy powder are added into the water-atomized iron powder and then are uniformly pre-mixed with the water-atomized iron powder in a planetary ball mill. 0.3 to 0.8wt. % of plasticizer is added into the pre-mixed powder and then is mixed with the pre-mixed powder for 2 to 5 hours to obtain the bonded powder. The bonded powder is heatedto 600 to 950 DEG C by using a multi-stage heating process to be subjected to plasticizing treatment to obtain plasticized iron-based powder. The plasticized iron-based powder is pressed by a high-speed forming press to obtain a high-density compac. The compact is sintered at a temperature of 1100 to 1250 DEG C in a hydrogen atmosphere for 2 to 5 hours to obtain a high-density powder metallurgy iron-based material. The method integrates the advantages of powder modification treatment, die wall lubrication and high-speed pressing, and is more suitable for preparing the high-density powder metallurgy iron-based material.
Owner:YANGZHOUSSHINE POWDER METALLURGY

Device and method for continuously synthesizing amine-terminated polyether by utilizing fixed bed

The invention provides a device and a method for continuously synthesizing amine-terminated polyether by utilizing a fixed bed. The device for continuously synthesizing amine-terminated polyether by utilizing the fixed bed comprises a fixed bed reactor, a preheater, two gas-liquid separators, a compressor, a circulating compressor, a raw material pump, a liquid ammonia pump and two buffer tanks, hydrogen is preheated by virtue of the preheater and is fed into the fixed bed reactor with raw material and liquid ammonia; the amine-terminated polyether is synthesized in a hydrogen atmosphere of the fixed bed; the fixed bed reactor is at the temperature of 150-300 DEG C and the pressure of 1-20MPa, ammonia alcohol ratio is 1-15, and unreacted hydrogen and ammonia are recycled. The device and method for continuously synthesizing amine-terminated polyether by utilizing the fixed bed overcome the defects of tedious operation, unstable product quality, low synthesis efficiency and the like of the existing technology as a batch-type operation is adopted, a continuous reaction technological design is adopted, a technology is simple, performance is stable, yield is high, excessive ammonia and hydrogen are recycled, pollution to the environment is reduced, production cost is reduced, and energy is saved; conversion rate of hydroxyl-terminated polyether or derivative thereof and selectivity of the amine-terminated polyether product are obviously improved, so that production cost of the amine-terminated polyether product is obviously reduced.
Owner:康达新材料(集团)股份有限公司

Carbon nanotube-metal composite enhanced copper-based composite material and preparation method thereof

The invention relates to a carbon nanotube-metal composite enhanced copper-based composite material and a preparation method thereof, and belongs to the field of preparation of composite materials. The preparation method comprises the following steps: preparing colloidal sol by using soluble salts containing metallic elements and copper ions and carbon nanotube as raw materials, carrying out spray granulation by using the colloidal sol through a spray dryer so as to obtain nanoscale mixed powder, calcining the mixed powder in an oxygen-free atmosphere so as to obtain black powder, reducing the black powder in a hydrogen atmosphere so as to obtain carbon nanotube-metallic element composite enhanced copper-based powder, carrying out isostatic press moulding on the mixed powder, and then sintering in the hydrogen atmosphere so as to obtain the carbon nanotube-metallic element composite enhanced copper-based composite material, wherein the content of a metallic element X in the composite material is 0.1-2wt%, and the content of the carbon nanotube in the composite material is 0.1-2wt%. The preparation method has the advantages that corresponding carbides can be formed, the problem of reinforcement agglomeration caused by poor interface bonding between reinforcement and a copper matrix is solved, and the copper-based composite material with excellent combination properties can be obtained.
Owner:NINGBO CPX ELECTRONICS TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products