Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

66 results about "Ruthenium tetroxide" patented technology

Ruthenium tetroxide is the inorganic compound with the formula RuO₄. It is a yellow volatile solid that melts near room temperature. Samples are typically black due to impurities. The analogous OsO₄ is more widely used and better known. One of the few solvents in which RuO₄ forms stable solutions is CCl₄.

Ruthenium containing layer deposition method

An exemplary apparatus and method of forming a ruthenium tetroxide containing gas to form a ruthenium containing layer on a surface of a substrate is described herein. The method and apparatus described herein may be especially useful for fabricating electronic devices that are formed on a surface of the substrate or wafer. Generally, the method includes exposing a surface of a substrate to a ruthenium tetroxide vapor to form a catalytic layer on the surface of a substrate and then filling the device structures by an electroless, electroplating, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), atomic layer deposition (ALD) or plasma enhanced ALD (PE-ALD) processes. In one embodiment, the ruthenium containing layer is formed on a surface of a substrate by creating ruthenium tetroxide in an external vessel and then delivering the generated ruthenium tetroxide gas to a surface of a temperature controlled substrate positioned in a processing chamber. In one embodiment, a ruthenium tetroxide containing solvent formation process is used to form ruthenium tetroxide using a ruthenium tetroxide containing source material. In one embodiment, of a ruthenium containing layer is formed on a surface of a substrate, using the ruthenium tetroxide containing solvent. In another embodiment, the solvent is separated from the ruthenium tetroxide containing solvent mixture and the remaining ruthenium tetroxide is used to form a ruthenium containing layer on the surface of a substrate.
Owner:APPLIED MATERIALS INC

Ruthenium layer deposition apparatus and method

An exemplary apparatus and method of forming a ruthenium tetroxide containing gas to form a ruthenium containing layer on a surface of a substrate is described herein. The method and apparatus described herein may be especially useful for fabricating electronic devices that are formed on a surface of the substrate or wafer. Generally, the method includes exposing a surface of a substrate to a ruthenium tetroxide vapor to form a catalytic layer on the surface of a substrate and then filling the device structures by an electroless, electroplating, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), atomic layer deposition (ALD) or plasma enhanced ALD (PE-ALD) processes. In one embodiment, the ruthenium containing layer is formed on a surface of a substrate by creating ruthenium tetroxide in an external vessel and then delivering the generated ruthenium tetroxide gas to a surface of a temperature controlled substrate positioned in a processing chamber. In one embodiment, a ruthenium tetroxide containing solvent formation process is used to form ruthenium tetroxide using a ruthenium tetroxide containing source material. In one embodiment, of a ruthenium containing layer is formed on a surface of a substrate, using the ruthenium tetroxide containing solvent. In another embodiment, the solvent is separated from the ruthenium tetroxide containing solvent mixture and the remaining ruthenium tetroxide is used to form a ruthenium containing layer on the surface of a substrate.
Owner:APPLIED MATERIALS INC

Ruthenium containing layer deposition method

An exemplary apparatus and method of forming a ruthenium tetroxide containing gas to form a ruthenium containing layer on a surface of a substrate is described herein. The method and apparatus described herein may be especially useful for fabricating electronic devices that are formed on a surface of the substrate or wafer. Generally, the method includes exposing a surface of a substrate to a ruthenium tetroxide vapor to form a catalytic layer on the surface of a substrate and then filling the device structures by an electroless, electroplating, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), atomic layer deposition (ALD) or plasma enhanced ALD (PE-ALD) processes. In one embodiment, the ruthenium containing layer is formed on a surface of a substrate by creating ruthenium tetroxide in an external vessel and then delivering the generated ruthenium tetroxide gas to a surface of a temperature controlled substrate positioned in a processing chamber. In one embodiment, a ruthenium tetroxide containing solvent formation process is used to form ruthenium tetroxide using a ruthenium tetroxide containing source material. In one embodiment, of a ruthenium containing layer is formed on a surface of a substrate, using the ruthenium tetroxide containing solvent. In another embodiment, the solvent is separated from the ruthenium tetroxide containing solvent mixture and the remaining ruthenium tetroxide is used to form a ruthenium containing layer on the surface of a substrate.
Owner:APPLIED MATERIALS INC

Ruthenium trichloride hydrate preparation method

The invention discloses a ruthenium trichloride hydrate preparation method. Metallic ruthenium powder and sodium chloride are mixed for melting at a high temperature at first, and a trace amount of starch is added for maintaining a weak reducing atmosphere at the early heating stage; chlorine is introduced into the molten melt, so that most of the ruthenium powder is converted to sodium chlororuthenate; ruthenium tetroxide gas generated in the melting process is absorbed by a mixed solution of diluted hydrochloric acid and ethyl alcohol; after the sodium chlororuthenate obtained by melting andthe diluted hydrochloric acid solution with the absorbed ruthenium tetroxide are combined, black ruthenium hydroxide or ruthenium dioxide hydrate is generated after sodium hydroxide is added for neutralization, and after a product is filtered and washed for multiple times for removing sodium ions, dissolution with hydrochloric acid is conducted for concentration and crystallization to generate ruthenium trichloride hydrate crystals for preparation. According to the method, the chlorine is introduced into the melt for thorough stirring, and ruthenium conversion is efficiently promoted throughbath smelting, so that the reaction rate is fast, and the reaction efficiency is high; a trace amount of the starch is added into the material to control the early stage oxidation reaction rate of theruthenium powder, so that the production cycle is short, and the labor intensity is low.
Owner:CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products