Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2434 results about "Polysulfide" patented technology

Polysulfides are a class of chemical compounds containing chains of sulfur atoms. There are two main classes of polysulfides: anions and organic polysulfides. Anions have the general formula S²⁻ₙ. These anions are the conjugate bases of the hydrogen polysulfides H₂Sₙ. Organic polysulfides generally have the formulae RSₙR, where R = alkyl or aryl.

Methods and reagents for enhancing the cycling efficiency of lithium polymer batteries

Batteries including a lithium electrode and a sulfur counter electrode that demonstrate improved cycling efficiencies are described. In one embodiment, an electrochemical cell having a lithium electrode and a sulfur electrode including at least one of elemental sulfur, lithium sulfide, and a lithium polysulfide is provided. The lithium electrode includes a surface coating that is effective to increase the cycling efficiency of said electrochemical cell. In a more particular embodiment, the lithium electrode is in an electrolyte solution, and, more particularly, an electrolyte solution including either elemental sulfur, a sulfide, or a polysulfide. In another embodiment, the coating is formed after the lithium electrode is contacted with the electrolyte. In a more particular embodiment, the coating is formed by a reaction between the lithium metal of the lithium electrode and a chemical species present in the electrolyte.
Owner:POLYPLUS BATTERY CO INC

Epoxy coating

This invention concerns an epoxy coating for use as a non-skid surface for applications such as the deck of an aircraft carrier. The epoxy coating can be formulated from (a) an amine curing agent, (b) an epoxide-containing toughening agent such as a polysulfide and / or a polythioether, (c) an epoxy resin, (d) a rubber toughening agent, and (e) an optional fire retardant, a glass fiber thixotrope and impact toughening agent, an optional pigment, an optional corrosion inhibitor, an optional moisture penetration inhibitor, an optional ultraviolet light stabilizer, an optional abrasive aggregate, or a combination thereof.
Owner:TEXAS RES INT

Composite materials comprising polar polymers and single-wall carbon nanotubes

The invention relates to a composite comprising a weight fraction of single-wall carbon nanotubes and at least one polar polymer wherein the composite has an electrical and / or thermal conductivity enhanced over that of the polymer alone. The invention also comprises a method for making this polymer composition. The present application provides composite compositions that, over a wide range of single-wall carbon nanotube loading, have electrical conductivities exceeding those known in the art by more than one order of magnitude. The electrical conductivity enhancement depends on the weight fraction (F) of the single-wall carbon nanotubes in the composite. The electrical conductivity of the composite of this invention is at least 5 Siemens per centimeter (S / cm) at (F) of 0.5 (i.e. where single-wall carbon nanotube loading weight represents half of the total composite weight), at least 1 S / cm at a F of 0.1, at least 1×10−4 S / cm at (F) of 0.004, at least 6×10−9 S / cm at (F) of 0.001 and at least 3×10−16 S / cm (F) plus the intrinsic conductivity of the polymer matrix material at of 0.0001. The thermal conductivity enhancement is in excess of 1 Watt / m-° K. The polar polymer can be polycarbonate, poly(acrylic acid), poly(acrylic acid), poly(methacrylic acid), polyoxide, polysulfide, polysulfone, polyamides, polyester, polyurethane, polyimide, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinyl pyridine), poly(vinyl pyrrolidone), copolymers thereof and combinations thereof. The composite can further comprise a nonpolar polymer, such as, a polyolefin polymer, polyethylene, polypropylene, polybutene, polyisobutene, polyisoprene, polystyrene, copolymers thereof and combinations thereof.
Owner:SAMSUNG ELECTRONICS CO LTD

Methods and reagents for enhancing the cycling efficiency of lithium polymer batteries

Batteries including a lithium electrode and a sulfur counter electrode that demonstrate improved cycling efficiencies are described. In one embodiment, an electrochemical cell having a lithium electrode and a sulfur electrode including at least one of elemental sulfur, lithium sulfide, and a lithium polysulfide is provided. The lithium electrode includes a surface coating that is effective to increase the cycling efficiency of said electrochemical cell. In a more particular embodiment, the lithium electrode is in an electrolyte solution, and, more particularly, an electrolyte solution including either elemental sulfur, a sulfide, or a polysulfide. In another embodiment, the coating is formed after the lithium electrode is contacted with the electrolyte. In a more particular embodiment, the coating is formed by a reaction between the lithium metal of the lithium electrode and a chemical species present in the electrolyte.
Owner:POLYPLUS BATTERY CO INC

Coated lithium electrodes

Batteries including a lithium anode stabilized with a metal-lithium alloy and battery cells comprising such anodes are provided. In one embodiment, an electrochemical cell having an anode and a sulfur electrode including at least one of elemental sulfur, lithium sulfide, and a lithium polysulfide is provided. The anode includes a lithium core and a ternary alloy layer over the lithium core where the ternary alloy comprises lithium and two other metals. The ternary alloy layer is effective to increase cycle life and storageability of the electrochemical cell. In a more particular embodiment, the ternary alloy layer is comprised of lithium, copper and tin.
Owner:POLYPLUS BATTERY CO INC

Silated core polysulfides, their preparation and use in filled elastomer compositions

This invention relates to novel sulfur-containing silane coupling agents, and organic polymers containing carbon-carbon double bonds. These novel silanes can be carried on organic and inorganic fillers. The invention also relates to articles of manufacture, particularly tires, made from the elastomer compositions described herein.
Owner:MOMENTIVE PERFORMANCE MATERIALS INC

Tire with low hydrocarbon emission rubber combination of tread and sidewall components with compositional limitations

The invention relates to a tire of a structural combination of tire tread and sidewall components with compositional limitations containing minimal, if any, of in situ formed alcohol and methyl isobutyl ketone byproducts. The tread component rubber composition contains pre-hydrophobated silica reinforcement. The sidewall component contains low unsaturation EPDM or brominated copolymer of isobutylene and p-methylstyrene and may contain pre-hydrophobated silica reinforcement. The silica reinforcement for said tread and sidewall components is a pre-hydrophobated precipitated silica. The pre-hydrophobated silica is prepared, prior to mixing with the elastomer(s), by reacting hydroxyl groups (e.g. silanol groups) contained on the surface of a precipitated silica with an alkoxyorganomercaptosilane or a combination of an alkoxyorganomercaptosilane and a substituted alkylsilane or with a bis-3(trialkoxysilylalkyl) polysulfide which contains an average of from 2 to 4 connecting sulfur atoms in its polysulfidic bridge to form a composite thereof. The alcohol byproduct therefrom is removed from the composite prior to its introduction into the rubber composition(s). In another aspect of the invention, the connecting sidewall rubber composition, and optionally the tread composition is free of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine antidegradant (referred herein to as 6PPD) in order to prevent in situ formation of methyl isobutyl ketone byproduct from the reaction of 6PPD with atmospheric oxygen and / or ozone.
Owner:THE GOODYEAR TIRE & RUBBER CO

Process For Recovering Alkali Metals and Sulfur From Alkali Metal Sulfides and Polysulfides

Alkali metals and sulfur may be recovered from alkali polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali polysulfide and a solvent that dissolves elemental sulfur. A catholyte solution includes alkali metal ions and a catholyte solvent. Applying an electric current oxidizes sulfur in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Sulfur is recovered by removing and cooling a portion of the anolyte solution to precipitate solid phase sulfur. Operating the cell at low temperature causes elemental alkali metal to plate onto the cathode. The cathode may be removed to recover the alkali metal in batch mode or configured as a flexible band to continuously loop outside the catholyte compartment to remove the alkali metal.
Owner:ENLIGHTEN INNOVATIONS INC

Tire compositions and components containing silated cyclic core polysulfides

Sulfur-containing silane coupling agents, and organic polymers containing carbon-carbon double bonds. These silanes can be carried on organic and inorganic fillers. The invention also relates to tire compositions and articles of manufacture, particularly tires, made from the elastomer compositions described herein.
Owner:CONTINENTAL REIFEN DEUTSCHLAND GMBH

Tire compositions and components containing silated core polysulfides

ActiveUS20080161452A1Good dispersion of fillerImprove productivitySpecial tyresElastomerSilanes
Sulfur-containing silane coupling agents, and organic polymers containing carbon-carbon double bonds. These silanes can be carried on organic and inorganic fillers. The invention also relates to tire compositions and articles of manufacture, particularly tires, made from elastomer compositions.
Owner:CONTINENTAL REIFEN DEUTSCHLAND GMBH

Double-electrolyte system lithium sulphur battery and preparing method thereof

The invention relates to a double-electrolyte system lithium sulphur battery and a preparing method thereof. The double-electrolyte system lithium sulphur battery comprises a positive electrode and a negative electrode, wherein solid electrolyte is arranged between the positive electrode and the negative electrode, and the gap between the solid electrolyte and the positive electrode and the gap between the solid electrolyte and the negative electrode are filled with electrolyte solution or polymer electrolyte. The positive electrode and the negative electrode are separated by the solid electrolyte, the gap between the solid electrolyte and the positive electrode and the gap between the solid electrolyte and the negative electrode are filled with the electrolyte solution or the polymer electrolyte, polysulfide is prevented from shuttling between the positive electrode and the negative electrode, the full contact between electrode active materials and electrolyte is guaranteed, and accordingly active materials in electrodes can be well utilized. The lithium sulphur battery of a new structure can fundamentally solve the shuttling effect and can achieve high electrochemical performance.
Owner:SHANGHAI INST OF CERAMIC CHEM & TECH CHINESE ACAD OF SCI

Polymer electrolyte membrane and solid polymer electrolyte fuel cell using same

A composite polymer electrolyte membrane is formed from a first polymer electrolyte comprising a sulfonated polyarytene polymer and a second polymer electrolyte comprising another hydrocarbon polymer electrolyte. In the first polymer electrolyte, 2-70 mol % constitutes an aromatic compound unit with an electron-attractive group in its principal chain, while 30-98 mol % constitutes an aromatic compound unit without an electron-attractive group in its principal chain. The second polymer electrolyte is a sulfonated polyether or sulfonated polysulfide polymer electrolyte.
Owner:HONDA MOTOR CO LTD +1

Silane-modified white carbon black-carbon black composite filling and preparation method thereof

The invention discloses a silane-modified white carbon black-carbon black composite filling and a preparation method thereof. The method is characterized in comprising the following steps of: (1) adding white carbon black which is prepared by means of precipitation and white carbon black which is prepared by means of gas phase into a high-speed mixer according to the weight ratio of 3:1-3:2, slowly and evenly adding silane polysulfide in a spraying way, and gradually heating up at 100-120 DEG C to promote the surface modification reaction to be thoroughly performed; and (2) adding carbon black and mixing for 60-180min according to the weight ratio of the carbon black to the white carbon black which is prepared by means of gas phase and the white carbon black which is prepared by means of precipitation of 1:5-1:10 under the condition of continuous stirring and temperature persevering, and cooling by means of temperature reducing to obtain the silane-modified white carbon black-carbon black composite filling. The silane-modified white carbon black-carbon black composite filling which is prepared by the method improves the dispersibility of the white carbon black which is prepared by means of gas phase in rubber, reduces the charging time of a production field, obviously improves the operation environment, is used for the prescription of a tread rubber of a tire, can obviously reduce the rolling resistance of the tire, and saves the gasoline.
Owner:HUBEI HUIFU NANOMATERIAL CO LTD

Active cathode layer for metal-sulfur secondary battery

ActiveUS20160294000A1Perfect sulfur utilization efficiencyIncrease loadElectrode carriers/collectorsSecondary cellsLithiumPolysulfide
A preloaded cathode layer, comprising: (A) An integral porous structure having massive surfaces greater than 100 m2 / g or pores with a size from 1.0 nm to 100 nm, wherein multiple conductive particles, platelets or filaments, without a conductive filler, form a 3-D conductive network; and (B) a metal polysulfide preloaded in the pores or deposited on the massive surfaces, selected from: (a) an MxSy, (x=1-3 and y=1-10) wherein M is a metal element selected from a non-lithium alkali metal, an alkaline metal selected from Mg or Ca, a transition metal, a metal from groups 13 to 17, or a combination thereof, or (b) Li2S6, Li2S7, Li2S8, Li2S9, or Li2S10, wherein the metal polysulfide contains a thin coating or small particles with a thickness or diameter less than 20 nm and occupies a weight fraction of from 1% to 99%.
Owner:GLOBAL GRAPHENE GRP INC

Alkali Metal-Sulfur Batteries Having High Volumetric and Gravimetric Energy Densities

Provided is an alkali metal-sulfur battery, comprising: (a) an anode; (b) a cathode having (i) a cathode active material slurry comprising a cathode active material dispersed in an electrolyte and (ii) a conductive porous structure acting as a 3D cathode current collector having at least 70% by volume of pores and wherein cathode active material slurry is disposed in pores of the conductive porous structure, wherein the cathode active material is selected from sulfur, lithium polysulfide, sodium polysulfide, sulfur-polymer composite, sulfur-carbon composite, sulfur-graphene composite, or a combination thereof; and (c) a separator disposed between the anode and the cathode; wherein the cathode thickness-to-cathode current collector thickness ratio is from 0.8 / 1 to 1 / 0.8, and / or the cathode active material constitutes an electrode active material loading greater than 15 mg / cm2, and the 3D porous cathode current collector has a thickness no less than 200 μm (preferably thicker than 500 μm).
Owner:GLOBAL GRAPHENE GRP INC

Nano carbon sulfur composite material with network structure and preparation method of nano carbon composite material

The invention relates to a nano carbon material with a network structure consisting of polymer chains, in particular to a nano carbon sulfur composite material with a network structure suitable to be used in a secondary lithium sulfur battery anode and a preparation method thereof. The carbon sulfur composite material is formed by adopting the following steps of: introducing functional groups onto carbon particles by adopting the electric conductivity and the porosity of a carbon material and the reaction capacity of similar condensed aromatics of the carbon material and by means of an irreversible chemical reaction; introducing the polymer chains, wherein the polymer chains are stretched, bent and cross-linked on the surfaces of the carbon particles to form a cross-linked network structure; and compounding a sulfur element or a polysulfide (m is more than 2) containing -Sm- structure into the network structure to form the nano carbon sulfur composite material with the network structure. The carbon sulfur composite material has a rich cross-linked network structure, nano-scale network pores constrain the sulfur element or the polysulfide (m is more than 2) containing the -Sm- structure in the network, and the active substances are limited in a certain region to react, so that the composite material has predominant electrochemical performance.
Owner:NO 63971 TROOPS PLA

Tack free surface cures of polymers by organic peroxides in the presence of air

InactiveUS6747099B1VulcanizationDecomposition
Compositions are disclosed which comprise mixtures of at least one compound selected from silicone elastomers, bis-, tri- or higher polymaleimides and / or bis-, tri- or higher polycitraconimides, and at least one compound selected from p-phenylene-diamine based antiozonants, sulfur compounds capable of accelerating sulfur vulcanization of polymers capable of being crosslinked by sulfur and polysulfide polymers which when compounded into polymers curable by free radical initiators in the presence of free radical initiators permit substantially tack free surface cure of the polymers by decomposition of the free radical initiator in the presence of molecular oxygen. Compositions containing the above ingredients and at least one free radical initiator, curable compositions containing the combination and processes for making and using the compositions are also disclosed.
Owner:ARKEMA INC

Polymer blend and compositions and methods for using the same

A polymer blend having at least one polysulfide component and at least one polythioether component is disclosed. The polymer blend offers numerous advantages, including the ability to compatibilize formulations based on either polysulfide chemistry or polythioether chemistry alone. Compositions comprising the polymer blend, particularly sealant formulations for use in aerospace applications, are also disclosed, as are multilayer sealant assemblies and methods for repairing the same.
Owner:PRC DE SOTO INT INC

Arsenide depression in flotation of multi-sulfide minerals

ActiveUS7004326B1Remarkable effectEffectively depressedFlotationSlurrySulfide minerals
A mineral separation process includes wet-grinding the ore to liberation of minerals, oxidizing the slurry using air, hydrogen peroxide or other oxidants and floating the valuable minerals at a pH between about 9.0 and 10.0 with a xanthate as collector, and a combination of a polyamine and a sulfur containing species as depressants for arsenide minerals. This depressant suite effectively depresses the flotation of arsenide minerals with no effect on the flotation of the valuable minerals.
Owner:INCO

Lithium-sulfur battery multilayer composite positive electrode and preparation method thereof

The invention discloses a lithium-sulfur battery multilayer composite positive electrode and a preparation method thereof, and belongs to the field of electrochemical batteries. The lithium-sulfur battery multilayer composite positive electrode has a multiple composite structure consisting of a first graphene thin-film layer, a carbon / sulfur active substance layer, a second graphene thin-film layer and a polymer layer, and multi-element integrated design of the lithium-sulfur batteries is realized. The positive electrode is characterized in that the performances of the lithium-sulfur battery are realized by integrally designing elements of the lithium-sulfur battery, the first graphene thin-film layer plays a role of a current collector, so that the weight of the current collector in the battery is effectively reduced and the effective contact between the current collector and an active electrode material is improved; and the second graphene thin-film layer and the polymer layer play a role of a diaphragm, are equivalent to a solid electrolysis layer and a barrier layer of a polysulfide, and are capable of effectively increasing transmission of electrons and ions and greatly limiting shuttling of polysulfide ions. The multilayer composite-structure positive electrode is simple and easily controllable in preparation process, can be prepared in large scale with low cost, and has great application value.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Lithium sulfur battery provided with adsorption layer

The invention relates to a lithium sulfur battery provided with an adsorption layer. The adsorption layer is added in the lithium sulfur battery, is made of a strong-adsorption material with a high specific surface area and a porous structure, and is positioned between an anode pole piece and a porous diaphragm. The adsorption layer can adsorb polysulfide formed in charging and discharging processes of the lithium sulfur battery and prevent the polysulfide dissolved in electrolytic solution from scattering to the surface of a cathode to generate corrosion reaction with lithium and cause irreversible capacity losses of the battery. Therefore, the adsorption layer can improve the performance of the lithium sulfur battery.
Owner:WUHAN UNIV OF TECH

Tire with tread of rubber composition prepared with reinforcing fillers which include starch/plasticizer composite

The invention relates to the preparation of a rubber composition containing starch / plasticizer composite reinforcement, together with at least one additional reinforcing filler, through the utilization of a combination of an organosilane disulfide compound mixed with a rubber composition in a preparatory, non-productive, mixing stage(s) followed by adding an organosilane polysulfide compound in a subsequent, productive, mixing stage. The invention further relates to the resulting rubber composition and use thereof in rubber products, including tires.
Owner:THE GOODYEAR TIRE & RUBBER CO

Carbon-metal oxide-sulfur cathodes for high-performance lithium-sulfur batteries

Embodiments presented herein provide a new approach for high-performance lithium-sulfur battery by using novel carbon-metal oxide-sulfur composites. The composites may be prepared by encapsulating sulfur particles in bifunctional carbon-supported metal oxide or other porous carbon-metal oxide composites. In this way, the porous carbon-metal oxide composite confines sulfur particles within its tunnels and maintain the electrical contact during cycling. Furthermore, the uniformly embedded metal oxides in the structure strongly adsorb polysulfide intermediates, avoid dissolution loss of sulfur, and ensure high coulombic efficiency as well as a long cycle life.
Owner:PENN STATE RES FOUND

Coating with primer and topcoat both containing polysulfide, epoxy resin and rubber toughener

A process for coating a solid surface comprises< / PTEXT>1) applying onto a solid surface a primer coating prepared from an amine curing agent, a polysulfide toughening agent, an epoxy resin, a rubber toughening agent, a fire retardant, a glass fiber thixotrope, and a pigment; and< / PTEXT>2) applying onto the primer coating a topcoat prepared from an amine curing agent, a polysulfide toughening agent, an epoxy resin, a rubber toughening agent, a fire retardant, a glass fiber thixotrope, a pigment and an abrasive aggregate.< / PTEXT>
Owner:TRI AUSTIN

Graphene-based nitrogen-doped hierachical-pore carbon nanosheet/sulfur composite material for cathode of lithium sulfur battery, as well as preparation method and application of graphene-based nitrogen-doped hierachical-pore carbon nanosheet/sulfur composite material

The invention discloses a graphene-based nitrogen-doped hierachical-pore carbon nanosheet / sulfur composite material for a cathode of a lithium sulfur battery, as well as a preparation method and application of the graphene-based nitrogen-doped hierachical-pore carbon nanosheet / sulfur composite material. The carbon nanosheet is a graphene-based nitrogen-doped hierachical-pore carbon nanosheet, and is prepared by the steps of growing poly-pyrrole on graphene oxide in situ, performing carbonization at high temperature, activating by using potassium hydroxide and forming pores, wherein the graphene oxide and nano-silicon dioxide serve as double templates; the thickness of the carbon nanosheet is 10 to 25 nm; the specific surface area is 800 to 1,600 m<2> / g; the pore diameter of the carbon nanosheet is distributed into the range of 0.8 to 6 nm in a concentrated way; the structure of the carbon nanosheet is a sandwich-like type which adopts graphene as the interlayer of the carbon nanosheet. The carbon nanosheet with abundant micro-pores, meso-pores and large specific surface area can load more sulfur active substances and can effectively inhibit dissolution of polysulfide. The ultrathin nanosheet, and the micro-pores and meso-pores guarantee diffusion of electrolyte and transmission of ions. According to the structure, the capacity, the cycling stability, the coulombic efficiency and the rate performance of the carbon nanosheet / sulfur composition material applied to the lithium sulfur battery are improved synergistically.
Owner:WENZHOU UNIVERSITY

Tire compositions and components containing free-flowing filler compositions

ActiveUS20080161460A1Better wear characteristicsImprove rolling resistanceSpecial tyresPolysulfideOrganic chemistry
Free-flowing filler compositions containing silated cyclic core polysulfide coupling agents, and rubber and tire compositions containing the filler compositions.
Owner:CONTINENTAL REIFEN DEUTSCHLAND GMBH

Silica reinforced rubber composition and use in tires

This invention relates to the preparation of silica-rich rubber compositions which contain silica reinforcement and silica coupler together with a specified combination of zinc oxide and long chain (fatty) carboxylic acid such as stearic acid. The silica, silica coupling agent, zinc oxide and stearic acid are combined in a manner to form a complex network. The silica is a precipitated silica in a form of silica aggregates which contain hydroxyl groups on its surface. A preferred silica coupling agent is a bis (3-trialkoxysilylalkyl) polysulfide which contains an average of from 2 to about 4, preferably from 2 to about 2.6, connecting sulfur atoms in its polysulfidic bridge. The invention further relates to tires having a component thereof such as, for example, a tread.
Owner:HUA KUO CHIH +3

Carbon-sulfur-shell matter composite material having network dual-core shell structure and preparation method thereof

The invention relates to a carbon-sulfur-shell matter composite material having a network dual-core shell structure and a preparation method thereof. The carbon-sulfur-shell matter composite material has a carbon-sulfur-shell three layer structure, a central core (inner core) is nano carbon particles, sulfur elemental or a polysulfide containing-Sm-structure (m>2) is directly deposited on the nano carbon particles, or functional groups are introduced onto the nano carbon particles by use of polycyclic aromatic hydrocarbon like reaction capacity of the carbon material and through an irreversible chemical reaction, polymeric chains are introduced in, a crosslinked network structure is formed through stretching, bending and crosslinking of the polymeric chains on the surface of the nano carbon particles, the sulfur elemental or the polysulfide containing the-Sm-structure (m>2) is composited onto the crosslinked network structure to form a nano sulfur layer having a network structure, then a mono-core shell nano composite material having a network structure is obtained and is used as a second layer (outer core) of the carbon-sulfur-polymer composite material having the network dual-core shell structure, an outermost layer is a shell matter layer, electronic and / or ionic conductivity of the material are / is improved, dissolving loss of discharge products can be further inhibited, and structural stability of the material is improved. The material is suitable for positive poles of lithium sulfur batteries, and has a prominent effect on improvement of cycle stability of the lithium sulfur batteries.
Owner:NO 63971 TROOPS PLA

Rechargeable lithium-sulfur battery having a high capacity and long cycle life

A rechargeable lithium-sulfur cell comprising an anode, a separator and / or electrolyte, a sulfur cathode, an optional anode current collector, and an optional cathode current collector, wherein the cathode comprises (a) exfoliated graphite worms that are interconnected to form a porous, conductive graphite flake network comprising pores having a size smaller than 100 nm; and (b) nano-scaled powder or coating of sulfur, sulfur compound, or lithium polysulfide disposed in the pores or coated on graphite flake surfaces wherein the powder or coating has a dimension less than 100 nm. The exfoliated graphite worm amount is in the range of 1% to 90% by weight and the amount of powder or coating is in the range of 99% to 10% by weight based on the total weight of exfoliated graphite worms and sulfur (sulfur compound or lithium polysulfide) combined. The cell exhibits an exceptionally high specific energy and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Tire compositions and components containing free-flowing filler compositions

Free-flowing filler compositions containing silated cyclic core polysulfide coupling agents, and rubber and tire compositions containing the filler compositions.
Owner:CONTINENTAL REIFEN DEUTSCHLAND GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products