Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2413 results about "Polysulfide" patented technology

Polysulfides are a class of chemical compounds containing chains of sulfur atoms. There are two main classes of polysulfides: anions and organic polysulfides. Anions have the general formula S²⁻ₙ. These anions are the conjugate bases of the hydrogen polysulfides H₂Sₙ. Organic polysulfides generally have the formulae RSₙR, where R = alkyl or aryl.

Composite materials comprising polar polymers and single-wall carbon nanotubes

The invention relates to a composite comprising a weight fraction of single-wall carbon nanotubes and at least one polar polymer wherein the composite has an electrical and/or thermal conductivity enhanced over that of the polymer alone. The invention also comprises a method for making this polymer composition. The present application provides composite compositions that, over a wide range of single-wall carbon nanotube loading, have electrical conductivities exceeding those known in the art by more than one order of magnitude. The electrical conductivity enhancement depends on the weight fraction (F) of the single-wall carbon nanotubes in the composite. The electrical conductivity of the composite of this invention is at least 5 Siemens per centimeter (S/cm) at (F) of 0.5 (i.e. where single-wall carbon nanotube loading weight represents half of the total composite weight), at least 1 S/cm at a F of 0.1, at least 1×10−4 S/cm at (F) of 0.004, at least 6×10−9 S/cm at (F) of 0.001 and at least 3×10−16 S/cm (F) plus the intrinsic conductivity of the polymer matrix material at of 0.0001. The thermal conductivity enhancement is in excess of 1 Watt/m-° K. The polar polymer can be polycarbonate, poly(acrylic acid), poly(acrylic acid), poly(methacrylic acid), polyoxide, polysulfide, polysulfone, polyamides, polyester, polyurethane, polyimide, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinyl pyridine), poly(vinyl pyrrolidone), copolymers thereof and combinations thereof. The composite can further comprise a nonpolar polymer, such as, a polyolefin polymer, polyethylene, polypropylene, polybutene, polyisobutene, polyisoprene, polystyrene, copolymers thereof and combinations thereof.
Owner:SAMSUNG ELECTRONICS CO LTD

Tire with low hydrocarbon emission rubber combination of tread and sidewall components with compositional limitations

The invention relates to a tire of a structural combination of tire tread and sidewall components with compositional limitations containing minimal, if any, of in situ formed alcohol and methyl isobutyl ketone byproducts. The tread component rubber composition contains pre-hydrophobated silica reinforcement. The sidewall component contains low unsaturation EPDM or brominated copolymer of isobutylene and p-methylstyrene and may contain pre-hydrophobated silica reinforcement. The silica reinforcement for said tread and sidewall components is a pre-hydrophobated precipitated silica. The pre-hydrophobated silica is prepared, prior to mixing with the elastomer(s), by reacting hydroxyl groups (e.g. silanol groups) contained on the surface of a precipitated silica with an alkoxyorganomercaptosilane or a combination of an alkoxyorganomercaptosilane and a substituted alkylsilane or with a bis-3(trialkoxysilylalkyl) polysulfide which contains an average of from 2 to 4 connecting sulfur atoms in its polysulfidic bridge to form a composite thereof. The alcohol byproduct therefrom is removed from the composite prior to its introduction into the rubber composition(s). In another aspect of the invention, the connecting sidewall rubber composition, and optionally the tread composition is free of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine antidegradant (referred herein to as 6PPD) in order to prevent in situ formation of methyl isobutyl ketone byproduct from the reaction of 6PPD with atmospheric oxygen and / or ozone.
Owner:THE GOODYEAR TIRE & RUBBER CO

Silane-modified white carbon black-carbon black composite filling and preparation method thereof

The invention discloses a silane-modified white carbon black-carbon black composite filling and a preparation method thereof. The method is characterized in comprising the following steps of: (1) adding white carbon black which is prepared by means of precipitation and white carbon black which is prepared by means of gas phase into a high-speed mixer according to the weight ratio of 3:1-3:2, slowly and evenly adding silane polysulfide in a spraying way, and gradually heating up at 100-120 DEG C to promote the surface modification reaction to be thoroughly performed; and (2) adding carbon black and mixing for 60-180min according to the weight ratio of the carbon black to the white carbon black which is prepared by means of gas phase and the white carbon black which is prepared by means of precipitation of 1:5-1:10 under the condition of continuous stirring and temperature persevering, and cooling by means of temperature reducing to obtain the silane-modified white carbon black-carbon black composite filling. The silane-modified white carbon black-carbon black composite filling which is prepared by the method improves the dispersibility of the white carbon black which is prepared by means of gas phase in rubber, reduces the charging time of a production field, obviously improves the operation environment, is used for the prescription of a tread rubber of a tire, can obviously reduce the rolling resistance of the tire, and saves the gasoline.
Owner:HUBEI HUIFU NANOMATERIAL CO LTD

Nano carbon sulfur composite material with network structure and preparation method of nano carbon composite material

The invention relates to a nano carbon material with a network structure consisting of polymer chains, in particular to a nano carbon sulfur composite material with a network structure suitable to be used in a secondary lithium sulfur battery anode and a preparation method thereof. The carbon sulfur composite material is formed by adopting the following steps of: introducing functional groups onto carbon particles by adopting the electric conductivity and the porosity of a carbon material and the reaction capacity of similar condensed aromatics of the carbon material and by means of an irreversible chemical reaction; introducing the polymer chains, wherein the polymer chains are stretched, bent and cross-linked on the surfaces of the carbon particles to form a cross-linked network structure; and compounding a sulfur element or a polysulfide (m is more than 2) containing -Sm- structure into the network structure to form the nano carbon sulfur composite material with the network structure. The carbon sulfur composite material has a rich cross-linked network structure, nano-scale network pores constrain the sulfur element or the polysulfide (m is more than 2) containing the -Sm- structure in the network, and the active substances are limited in a certain region to react, so that the composite material has predominant electrochemical performance.
Owner:NO 63971 TROOPS PLA

Lithium-sulfur battery multilayer composite positive electrode and preparation method thereof

The invention discloses a lithium-sulfur battery multilayer composite positive electrode and a preparation method thereof, and belongs to the field of electrochemical batteries. The lithium-sulfur battery multilayer composite positive electrode has a multiple composite structure consisting of a first graphene thin-film layer, a carbon/sulfur active substance layer, a second graphene thin-film layer and a polymer layer, and multi-element integrated design of the lithium-sulfur batteries is realized. The positive electrode is characterized in that the performances of the lithium-sulfur battery are realized by integrally designing elements of the lithium-sulfur battery, the first graphene thin-film layer plays a role of a current collector, so that the weight of the current collector in the battery is effectively reduced and the effective contact between the current collector and an active electrode material is improved; and the second graphene thin-film layer and the polymer layer play a role of a diaphragm, are equivalent to a solid electrolysis layer and a barrier layer of a polysulfide, and are capable of effectively increasing transmission of electrons and ions and greatly limiting shuttling of polysulfide ions. The multilayer composite-structure positive electrode is simple and easily controllable in preparation process, can be prepared in large scale with low cost, and has great application value.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Graphene-based nitrogen-doped hierachical-pore carbon nanosheet/sulfur composite material for cathode of lithium sulfur battery, as well as preparation method and application of graphene-based nitrogen-doped hierachical-pore carbon nanosheet/sulfur composite material

The invention discloses a graphene-based nitrogen-doped hierachical-pore carbon nanosheet / sulfur composite material for a cathode of a lithium sulfur battery, as well as a preparation method and application of the graphene-based nitrogen-doped hierachical-pore carbon nanosheet / sulfur composite material. The carbon nanosheet is a graphene-based nitrogen-doped hierachical-pore carbon nanosheet, and is prepared by the steps of growing poly-pyrrole on graphene oxide in situ, performing carbonization at high temperature, activating by using potassium hydroxide and forming pores, wherein the graphene oxide and nano-silicon dioxide serve as double templates; the thickness of the carbon nanosheet is 10 to 25 nm; the specific surface area is 800 to 1,600 m<2> / g; the pore diameter of the carbon nanosheet is distributed into the range of 0.8 to 6 nm in a concentrated way; the structure of the carbon nanosheet is a sandwich-like type which adopts graphene as the interlayer of the carbon nanosheet. The carbon nanosheet with abundant micro-pores, meso-pores and large specific surface area can load more sulfur active substances and can effectively inhibit dissolution of polysulfide. The ultrathin nanosheet, and the micro-pores and meso-pores guarantee diffusion of electrolyte and transmission of ions. According to the structure, the capacity, the cycling stability, the coulombic efficiency and the rate performance of the carbon nanosheet / sulfur composition material applied to the lithium sulfur battery are improved synergistically.
Owner:WENZHOU UNIVERSITY

Carbon-sulfur-shell matter composite material having network dual-core shell structure and preparation method thereof

The invention relates to a carbon-sulfur-shell matter composite material having a network dual-core shell structure and a preparation method thereof. The carbon-sulfur-shell matter composite material has a carbon-sulfur-shell three layer structure, a central core (inner core) is nano carbon particles, sulfur elemental or a polysulfide containing-Sm-structure (m>2) is directly deposited on the nano carbon particles, or functional groups are introduced onto the nano carbon particles by use of polycyclic aromatic hydrocarbon like reaction capacity of the carbon material and through an irreversible chemical reaction, polymeric chains are introduced in, a crosslinked network structure is formed through stretching, bending and crosslinking of the polymeric chains on the surface of the nano carbon particles, the sulfur elemental or the polysulfide containing the-Sm-structure (m>2) is composited onto the crosslinked network structure to form a nano sulfur layer having a network structure, then a mono-core shell nano composite material having a network structure is obtained and is used as a second layer (outer core) of the carbon-sulfur-polymer composite material having the network dual-core shell structure, an outermost layer is a shell matter layer, electronic and/or ionic conductivity of the material are/is improved, dissolving loss of discharge products can be further inhibited, and structural stability of the material is improved. The material is suitable for positive poles of lithium sulfur batteries, and has a prominent effect on improvement of cycle stability of the lithium sulfur batteries.
Owner:NO 63971 TROOPS PLA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products