Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1378results about How to "Efficiently formed" patented technology

Device for the generative manufacturing of three-dimensional components

ActiveUS20130108726A1Efficient and cost-effective operationEfficiently formedManufacturing platforms/substratesConfectioneryEngineeringMonochrome
The invention relates to a device for producing products having individual geometries, comprising a substrate carrier device, a material application device for applying material, preferably above the substrate carrier device, which material application device can be moved relative to the substrate carrier device, and a control device which is coupled to the material application device for signaling. According to the invention, the material application device is coupled to an input interface for signaling and for selection of a first or a second application mode, the control device and the application device being designed such as to produce, in the first application mode, a three-dimensional product on the surface of a substrate plate by way of an additive production method, said substrate plate being connected to the substrate carrier device. According to the additive production method, a curable material is applied in consecutive layers, one or more predetermined regions are selectively cured after or during each application of a layer, the predetermined regions being bonded to one or more regions of the underlying layer. The predetermined region(s) is/are predetermined by a cross-section geometry of the product in the respective layer and is/are stored in the control device, and the curable material is applied in a plurality of consecutive layers to produce the three-dimensional product. The control device and the application device are further designed such that in the second mode of application one or more colors are applied to predetermined regions of a print substrate material connected to the substrate carrier device to produce a monochrome or polychrome print.

Organic thin film transistor and method of manufacturing the same, and semiconductor device having the organic thin film transistor

There have been problems in that a dedicated apparatus is needed for a conventional method of manufacturing an organic thin film transistor and in that: a little amount of an organic semiconductor film is formed with respect to a usage amount of a material; and most of the used material is discarded. Further, apparatus maintenance such as cleaning of the inside of an apparatus cup or chamber has needed to be frequently carried out in order to remove the contamination resulting from the material that is wastefully discarded. Therefore, a great cost for materials and man-hours for maintenance of apparatus have been required. In the present invention, a uniform organic semiconductor film is formed by forming an aperture between a first substrate for forming the organic semiconductor film and a second substrate used for injection with an insulating film formed at a specific spot and by injecting an organic semiconductor film material into the aperture due to capillarity to the aperture. The insulating film formed at the specific spot enables formation of the organic semiconductor film with high controllability. Further, the insulating film can also serve as a spacer that holds the aperture, that is, an interval (gap) between the substrates.

Backpack based system for human electricity generation and use when off the electric grid

An electricity-generating backpack that is substantially lighter in weight, has the multiple springs replaced with one large spring whose spring constant can be adjusted in the field in seconds, and replaces a DC generator with a brushless AC generator that permits approximately 70% generator efficiency and the generation of up to 20 W of electrical power by converting mechanical energy to electrical power. A device is provided that always removes some electricity, but not too much, as necessary to extract large levels of the electricity while controlling damping by providing electrical damping circuits including a DC-DC converter designed to emulate a desired load at its input terminals. Additional electricity generating E-MOD devices may be used for generating additional power by hooking an E-Mod device to a generator and to the backpack belt at the wearer's hip and includes a wand that fits against the wearer's femur so as to move through a range of motion as the patient walks. The system also provides multiple possibilities of electricity generation when not walking including a light-weight bicycle ergometer which can be mounted to the backpack frame and generate very high power levels (100 W). The electricity generated and stored by the backpack may be used to charge batteries and to power a number of devices that may be carried by the backpack, such as a Sterling Cooler System that is powered by the backpack's stored power to provide cooling power for cooling items carried by the backpack.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products