Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4996results about How to "Reduced strength" patented technology

Process of manufacturing Trench gate semiconductor device having gate oxide layer with multiple thicknesses

The a trench semiconductor device such as a power MOSFET the high electric field at the corner of the trench is diminished by increasing the thickness of the gate oxide layer at the bottom of the trench. Several processes for manufacturing such devices are described. In one group of processes a directional deposition of silicon oxide is performed after the trench has been etched, yielding a thick oxide layer at the bottom of the trench. Any oxide which deposits on the walls of the trench is removed before a thin gate oxide layer is grown on the walls. The trench is then filled with polysilicon in or more stages. In a variation of the process a small amount of photoresist is deposited on the oxide at the bottom of the trench before the walls of the trench are etched. Alternatively, polysilicon can be deposited in the trench and etched back until only a portion remains at the bottom of the trench. The polysilicon is then oxidized and the trench is refilled with polysilicon. The processes can be combined, with a directional deposition of oxide being followed by a filling and oxidation of polysilicon. A process of forming a "keyhole" shaped gate electrode includes depositing polysilicon at the bottom of the trench, oxidizing the top surface of the polysilicon, etching the oxidized polysilicon, and filling the trench with polysilicon.

System and method for frequency management in a communications positioning device

A frequency management scheme for a hybrid communications/positioning device, such as a cellular/GPS or other combined device, generates a local clock signal for the communications portion of the device, using a crystal oscillator or other part. The oscillator output may be delivered to a phase locked loop to drive a high-frequency clock for the cellular or other communications portion of the hybrid device. A processor may determine frequency error between the phase locked loop and base station or other reference, to derive a digital frequency tracking message. A Doppler search or other logical control message may likewise be communicated from the processor to a GPS or other positioning receiver. The GPS receiver circuitry may consequently adjust Doppler center, window width or other parameters to enhance time to first fix or other performance. The architecture eliminates the need for a second crystal or other direct oscillator in the GPS receiver portion of the hybrid device, while still maintaining GPS performance. The architecture of the design also eliminates the need for frequency correcting elements in the crystal oscillator or other base reference oscillator or clock. The invention can furthermore be used in any system, radio, modem, transceiver, or receiver that has two or more receivers that share one reference or base oscillator or clock.

Illumination device, display device, and light guide plate

An illumination device (L) includes a plurality of light source units (20) each having a light guide plate (1) and a plurality of light sources (21). The light guide plate (1) has an illumination region (4) through which incident beams of light from the light sources (21) are emitted outward and a light guide region (3) through which the incident beams of light from the light sources (21) are guided toward the illumination region (4), with the light guide region (3) and the illumination region (4) laid side-by-side. The illumination region (4) is divided into a plurality of light-emitting sections (9) by slit sections (8), provided in such a way as to extend along directions of optical axes of the light sources (21), which restrict transmission of light. At least one of the light sources (21) is provided to each of the light-emitting sections (9) in such a way as to be placed side-by-side along the light guide region (3). The light source units (20) are provided in such a way as to be placed side-by-side along at least along a first direction along which the light-emitting sections (9) are arranged in the illumination region (4). There is also provided a slit section (8) in at least part of a space between light-emitting sections (9) between light source units (20) adjacent to each other along the first direction. This makes it possible to provide an illumination device (L) capable of retaining its strength as a combination of light guide blocks while reducing leakage of light into an adjacent area and capable of emitting uniform light.

Method and apparatus for producing a fingerprint, and method and apparatus for identifying an audio signal

For producing a fingerprint of an audio signal, use is made of information defining a plurality of predetermined fingerprint modi, all of the fingerprint modi relating to the same type of fingerprint, the fingerprint modi, however, providing different fingerprints differing from each other with regard to their data volume, on the one hand, and to their characterizing strength for characterizing the audio signal, on the other hand, the fingerprint modi being pre-determined such that a fingerprint in accordance with a fingerprint modus having a first characterizing strength is convertible to a fingerprint in accordance with a fingerprint modus having a second characterizing strength, without using the audio signal. A predetermined fingerprint modus of the plurality of predetermined fingerprint modi is set and subsequently used for computing a fingerprint using the audio signal. The convertibility feature of the fingerprints having been produced by the different fingerprint modi enables setting a flexible compromise between the data volume and the characterizing strength for certain applications without having to re-generate a fingerprint database with each change of the fingerprint modus. Fingerprint representations scaled with regard to time or frequency may readily be converted to a different fingerprint modus.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products