Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2096 results about "Chromium oxide" patented technology

Method for separating and reclaiming vanadium and chromium from solution containing vanadium and chromium

This invention relates to an entirely new technology of completely recovering chromium and vanadium from vanadium-chromium miscible liquid. The main procedures include: first a primary-secondary compound amine extracting agent contacts the vanadium-chromium miscible liquid by means of countercurrent contact and extract, so as to extract most of vanadium and a small amount of chromium into a organic phase while most of chromium stays into a aqueous phase; and a reduction reaction is conducted with pH of acid adjustable faffinate (aqueous phase) and a certain amount of a reducing agent; the sodium hydroxide is used for adjusting pH value of the solution and filter, and finally the product is hydrous chromium oxide; at that time, the lye is used as a stripping agent; the vanadium is stripped from the vanadium-rich organic phase into water in the manner of countercurrent contact; and the vanadium is separated from the solution witthe method of ammonium precipitation and in the form of ammonium metavanadate; and finally the supernatant clear solution of the one is processed with deposited vanadium with a high-efficient distillation technology, and the strong aqua ammonia is left in the tower top and deamidization solution is left in the tower bottom until the extraction process is reached. The invention uses the primary-secondary compound amine as the extracting agent, extracts and separates vanadium and chromium selectively at a low temperature. The invention not only has a simple process flow, but also is low-cost, quite applicable in large-scale industrial production. In addition, the invention also provides high-purity ammonium metavanadate and 16 percentage strong aqua ammonia, and makes sure the vanadium and chromium can be completely recovered through re-use of the solution.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Compositions containing chromium, oxygen, and at least two modifier metals selected the group consisting of gold, silver, and palladium, their preparation, and their use as catalysts and catalyst precursors

A catalyst composition is disclosed that includes chromium, oxygen, and at least two of gold, silver, and palladium as essential constituent elements. The amount of modifier metals (gold, silver, and / or palladium) in the composition is from about 0.05 atom % to about 10 atom % based on the total amount of chromium and modifier metals. Also disclosed is a process for changing the fluorine distribution (i.e., content and / or arrangement) in a hydrocarbon or halogenated hydrocarbon in the presence of the catalyst composition; and methods for preparing said catalyst composition. One preparation method involves (a) co-precipitating a solid by adding ammonium hydroxide (aqueous ammonia) to an aqueous solution of soluble salts of modifier metals and a soluble chromium salt that contains at least three moles of nitrate per mole of chromium in the solution and has a modifier metal content of from about 0.05 atom % to about 10 atom % of the total content of modifier metals and chromium in the solution to form an aqueous mixture containing co-precipitated solid; (b) drying the co-precipitated solid formed in (a); and (c) calcining the dried solid formed in (b) in an atmosphere containing at least 10% oxygen by volume. Another preparation method involves (a) impregnating solid chromium oxide with a solution of a soluble modifier metal salts; (b) drying the impregnated chromium oxide prepared in (a); and optionally; (c) calcining the dried solid. Yet another preparation method involves mixing multiple compositions, each comprising chromium, oxygen, and at least one modifier metal.
Owner:EI DU PONT DE NEMOURS & CO

Multiple dispersion strengthening copper-base composite material prepared in situ and preparation method thereof

The invention discloses a multiple dispersion strengthening copper-base composite material produced in situ and a preparation method thereof; the reinforced phase comprises at least three of the following substances: titanium carbide, zirconium carbide, alumina, titanium boride, aluminum carbide, chromium oxide, zirconia, graphite and copper; wherein, the contents of titanium carbide, zirconium carbide, alumina, titanium boride, chromium oxide and zirconia are not less than 0.3% and not more than 5%, the content of aluminum carbide is not less than 0.1% and not more than 5%, the content of graphite is not less than 0.1% and not more than 1% and the balance is copper. The particle size of the reinforced phase is between 10nm to 10mu m. The preparation method adopts ball milling; pressing, sintering and squeezing processes and the technological parameters are optimized and controlled properly to obtain the multiple dispersion strengthening copper-base composite material. Because the in situ self-generation technology is adopted and various reinforced phase methods are combined, the material of the invention has higher high-temperature strength and better electroconductibility and anti-creep property compared with the traditional ceramic particle strengthening copper-base composite material.
Owner:WENZHOU HONGFENG ELECTRICAL ALLOY

Supported metal oxide double-active center ethylene-polymerization catalyst and its preparation method and use

ActiveCN103145897ABulk chemical productionPhillips catalystEthylene Homopolymers
The invention discloses a supported metal oxide double-active center ethylene-polymerization catalyst and its preparation method and use. The supported metal oxide double-active center ethylene-polymerization catalyst is characterized in that a supported vanadium active ingredient is introduced to a Phillips chromium-based catalyst; and the supported metal oxide double-active center ethylene-polymerization catalyst comprises the two active ingredients and an inorganic carrier, wherein the two active ingredients comprise a chromium oxide and a vanadium oxide. The preparation method of the supported metal oxide double-active center ethylene-polymerization catalyst comprises the following steps of coating a chromium salt and a vanadium salt on the inorganic carrier according to a certain ratio by a stepwise dipping or co-dipping method, carrying out drying, and carrying out high-temperature calcination. The supported metal oxide double-active center ethylene-polymerization catalyst is a catalyst for high-efficiency preparation of polyethylene, and can be used for preparation of an ethylene homopolymer or an ethylene-alpha olefin copolymer. The supported metal oxide double-active center ethylene-polymerization catalyst has high polymerization activity. Through the supported metal oxide double-active center ethylene-polymerization catalyst, polyethylene product molecular weight distribution is wide, wherein molecular weights of a part of polyethylene products are distributed in a double-peak way; hydrogen regulation sensibility and copolymerization performances are good; and the existing equipment utilizing a Phillips catalyst to realize preparation of polyethylene can be popularized and used without reforming.
Owner:EAST CHINA UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products