Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

113 results about "Lateral velocity" patented technology

Lateral and longitudinal velocity determination for an automotive vehicle

A system (18) for controlling a safety system (44) of an automotive vehicle (10) includes a longitudinal acceleration sensor (36), a vehicle speed sensor (20), a lateral acceleration sensor (32), a yaw rate sensor, and a controller (26). The controller (26) determines a stability index and provides a first observer that determines a reference longitudinal velocity in response to the longitudinal acceleration signal, the yaw rate signal, a pitch attitude and vehicle speed from wheel speed sensors. The controller (26) determines a reference lateral velocity in response to the lateral acceleration signal, the yaw rate signal, a roll attitude, a pitch attitude and vehicle speed from the wheel speed sensors. The controller provides a second observer that determines a second longitudinal velocity in response to the longitudinal acceleration signal, the yaw rate signal, a lateral velocity, the pitch attitude and a first adjustment based on the longitudinal reference velocity. The controller determines a second lateral velocity in response to the lateral acceleration signal, the yaw rate signal, a roll attitude, a pitch attitude and a second adjustment based on the lateral reference velocity. The controller determines an output lateral velocity and an output longitudinal velocity in response to the first observer, second observer and the stability index. The controller controls the safety system in response to the output lateral velocity and the output longitudinal velocity.
Owner:FORD GLOBAL TECH LLC

Anisotropic reverse time migration method for quasi-P wave equation in transverse isotropy with a vertical axis of symmetry (VTI) medium

InactiveCN102590859AOvercome precisionOvercoming the limitation of inclination angleSeismic signal processingReverse timeWave equation
The invention relates to an anisotropic reverse time migration method for a quasi-P wave equation in a transverse isotropy with a vertical axis of symmetry (VTI) medium. The method comprises the following steps of: (1) performing discrete differentiation on a first-order quasi-P wave equation in a two-dimensional VTI medium and a perfect matched layer (PML) absorption layer boundary equation by adopting staggered meshes to obtain high-order difference formats of forward continuation and reverse continuation of the two equations; (2) performing numeric calculation to obtain a forwards-continued wave field of a shot point and a reverse time continued wave field of a receiver point, and performing normalized correlation operation on the two wave fields to obtain a migration imaging result of each imaging point in a model; and (3) extracting common imaging point gathers from migration results to obtain a final migration profile. By the method, a problem about the migration imaging of intensive transverse speed variation and a high dip angle stratum can be solved; and the influence of anisotropy of the medium is also taken into account, and the good imaging effect of longitudinal wave data acquired from an anisotropic region can be achieved by an anisotropy-theory-based migration method.
Owner:中国石油集团西北地质研究所有限公司

Traveling crane operation control apparatus and method

To provide a traveling crane operation control apparatus and method enabling an operator to operate a traveling crane quickly and accurately by one hand and by a motion of his or her body with a controller worn thereon, without the need to gaze at his or her hand, and also allowing variable-speed control and fine speed control of each drive unit.
An operation control apparatus for a traveling crane has an operation control circuit section 1 including a base unit 2 wearable on an arm 4 of an operator and a control unit 3 operable by a hand. The base unit 2 has base unit tilt detecting means detecting a tilt direction and tilt angle of the base unit 2 in a vertical plane, base unit direction detecting means detecting a direction in which the base unit 2 points in a horizontal plane, and command signal generating means generating a travel command signal and a travel speed command signal for a travel motor, a traverse command signal and a traverse speed command signal for a traverse motor, and an elevation command signal and an elevation speed command signal for an elevation motor. The traveling crane can be controlled to perform travel, traverse, lifting and lowering operations simply by pointing the base unit 2 in a direction in which travel and traverse motions are desired to occur and in a vertical direction in which a lifting or lowering motion is desired to occur, and actuating the control unit 3.
Owner:KITO CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products