Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

89 results about "Transverse isotropy" patented technology

A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials.

Method for three dimensional seismic travel time tomography in transversely isotropic media

A method for estimating seismic velocities in vertically transversely isotropic media includes generating an initial estimate of vertical interval velocity and interval normal moveout velocity with respect to depth from seismic data. An initial estimate is generated of a first anisotropy parameter with respect to depth. The first anisotropy parameter is related to the interval normal moveout velocity and the interval vertical velocity. An initial estimate is generated with respect to depth of a second anisotropy parameter. The second anisotropy parameter is related to the first anisotropy parameter and an interval anelliptic parameter. A first tomographic inversion is performed with respect to the interval normal moveout velocity and the second anisotropy parameter at a constant value of the first anisotropy parameter until travel time differentials reach minimum values. Layer depths are adjusted with the initial estimate of vertical interval velocity. Using values of the second anisotropy parameter determined in the first tomographic inversion, a second tomographic inversion is performed of interval normal moveout velocity and the first anisotropy parameter with respect to depth. The adjusted layer depths, interval normal moveout velocities and interval vertical velocities are again adjusted and interval anelliptic parameters are calculated from the second tomographic inversion.
Owner:PGS GEOPHYSICAL AS

Anisotropic reverse time migration method for quasi-P wave equation in transverse isotropy with a vertical axis of symmetry (VTI) medium

InactiveCN102590859AOvercome precisionOvercoming the limitation of inclination angleSeismic signal processingReverse timeWave equation
The invention relates to an anisotropic reverse time migration method for a quasi-P wave equation in a transverse isotropy with a vertical axis of symmetry (VTI) medium. The method comprises the following steps of: (1) performing discrete differentiation on a first-order quasi-P wave equation in a two-dimensional VTI medium and a perfect matched layer (PML) absorption layer boundary equation by adopting staggered meshes to obtain high-order difference formats of forward continuation and reverse continuation of the two equations; (2) performing numeric calculation to obtain a forwards-continued wave field of a shot point and a reverse time continued wave field of a receiver point, and performing normalized correlation operation on the two wave fields to obtain a migration imaging result of each imaging point in a model; and (3) extracting common imaging point gathers from migration results to obtain a final migration profile. By the method, a problem about the migration imaging of intensive transverse speed variation and a high dip angle stratum can be solved; and the influence of anisotropy of the medium is also taken into account, and the good imaging effect of longitudinal wave data acquired from an anisotropic region can be achieved by an anisotropy-theory-based migration method.
Owner:中国石油集团西北地质研究所有限公司

Manual shale physical model and manufacturing method and application thereof

ActiveCN104007463ASignificant shear wave anisotropySignificant longitudinal wave anisotropySeismologyEpoxyPorosity
The invention provides a manual shale physical model and a manufacturing method and application of the manual shale physical model. The manufacturing method of the manual shale physical model includes the first step of mixing adhesives and stone powder evenly, wherein the adhesives are epoxy resin adhesives, the stone powder comprises 10%-70% of quart, 10%-80% of kaoline, 4%-25% of organic carbon powder and 3%-10% of calcite, and the use amount of the adhesives is 5%-35% of the total mass of the stone powder, the second step of filling a mould with mixtures of the adhesives and the stone powder, placing and fixing the mould on a pressure gauge horizontally, adjusting the perpendicular pressure intensity to 80-300 MPa, fixedly placing the mould for more than 24 hours for preliminary solidifying, and the third step of demoulding, drying a shale sample subjected to preliminary solidifying at the temperature ranging from 30 DEG C to 50 DEGC and obtaining the manual shale physical model. The obtained manual shale physical model is compact, has specific porosity and density, has anisotropic characteristics, has transverse isotropic characteristics and can provide a reliable basis for comparison and verification of research results of actual shale reservoir strata.
Owner:BC P INC CHINA NAT PETROLEUM CORP +1

Transverse isotropy stratum elastic coefficient well logging calculation method and device

The invention relates to a transverse isotropy stratum elastic coefficient well logging calculation method and device. The method comprises the steps that coring in different directions is carried out on a rock core, and a rock core sample is obtained; the rock core sample is measured, the longitudinal wave speed and the transverse wave speed of the rock core sample are obtained, and elastic coefficients C11, C13, C33, C44 and C66 are obtained by calculation of the longitudinal wave speed and the transverse wave speed; the elastic coefficients C33, C44 and C66 are obtained through array acoustic logging data and density logging data of a coring well; a combination relational expression between the measurable logging elastic coefficients C33, C44 and C66 and the unmeasurable logging elastic coefficients C11 and C13 is built by the utilization of the elastic coefficients C11, C13, C33, C44 and C66 obtained by calculation of the longitudinal wave speed and the transverse wave speed; the elastic coefficients C33, C44 and C66 obtained through the array acoustic logging data and the density logging data of the coring well are substituted to the combination relational expression, the unmeasurable logging elastic coefficients C11 and C13 are obtained, and finally the elastic coefficients representing the transverse isotropy stratum are obtained.
Owner:PETROCHINA CO LTD

Determination method for mechanical parameters of transverse isotropy shale reservoir rocks

ActiveCN104020276AConvenient for ray diffraction experimentsHigh theoretical calculation efficiencyEarth material testingPorosityX-ray
The invention discloses a determination method for mechanical parameters of transverse isotropy shale reservoir rocks. The determination method comprises the following steps: carrying out an X-ray diffraction experiment to determine rock mineral constituents of a certain well depth; inverting rock porosity of the certain well depth by utilizing acoustic logging information; determining the stacking density of clay by utilizing the determined rock mineral constituents and the porosity; determining rigidity matrixes of transverse isotropy rocks of shale under a scale 0 by using a closed cycle-correction-identification method; determining the rigidity matrixes of the transverse isotropy rocks of the shale under a scale 1 and a scale 2 by utilizing a pore elastic theory; and substituting the rigidity matrixes into inversion models of Young modulus, poisson ratio and shear modulus and determining the mechanical parameters of the rocks. According to the determination method, the mechanical strength parameters of the rocks are inverted by using the X-ray diffraction experiment, so that the inversion result is accurate on the basis of establishing the experiment; field rock fragments are easy to obtain so that the determination method has the characteristics of time conservation, labor conservation and money conservation in the aspect of experiment operation.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Method for three dimensional seismic travel time tomography in transversely isotropic media

A method for estimating seismic velocities in vertically transversely isotropic media includes generating an initial estimate of vertical interval velocity and interval normal moveout velocity with respect to depth from seismic data. An initial estimate is generated of a first anisotropy parameter with respect to depth. The first anisotropy parameter is related to the interval normal moveout velocity and the interval vertical velocity. An initial estimate is generated with respect to depth of a second anisotropy parameter. The second anisotropy parameter is related to the first anisotropy parameter and an interval anelliptic parameter. A first tomographic inversion is performed with respect to the interval normal moveout velocity and the second anisotropy parameter at a constant value of the first anisotropy parameter until travel time differentials reach minimum values. Layer depths are adjusted with the initial estimate of vertical interval velocity. Using values of the second anisotropy parameter determined in the first tomographic inversion, a second tomographic inversion is performed of interval normal moveout velocity and the first anisotropy parameter with respect to depth. The adjusted layer depths, interval normal moveout velocities and interval vertical velocities are again adjusted and interval anelliptic parameters are calculated from the second tomographic inversion.
Owner:PGS GEOPHYSICAL AS

Automatic generating method of three-dimensional woven composite hexahedron finite element model

ActiveCN107330148AFast establishment of finite element model functionRemoving Barriers to Mesostructural CharacterizationDesign optimisation/simulationSpecial data processing applicationsElement modelFiber bundle
The invention discloses an automatic generating method of a three-dimensional woven composite hexahedron finite element model. The method includes the following steps that a space trajectory in the fiber bundle center weaving process is calculated, and position coordinates of the center of each fiber bundle are obtained; position coordinates of space trajectories of center points of the fiber bundles are read, in other words, the position coordinates of each tightened fiber bundle are read, and geometric creation, direction grouping and hexahedron meshing are carried out. By means of the method, the rapid finite element model establishment function of a complex geometric structure three-dimensional woven composite can be achieved only by inputting multiple simple macroparameters. In combination with the geometric structure and finite element modeling, grouping is carried out according to fiber bundle center direction vectors, material spindle direction setting of transverse isotropy materials of the fiber bundles is convenient, the change of internal zone, surface zone and corner zone fiber bundle sections is considered, and transverse isotropy finite element model establishment of the large-size three-dimensional woven composite can be achieved in reality from being manually feasible theoretically.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Device and method for measuring shearing property of transverse isotropic material

The invention relates to a device and a method for measuring shearing property of a transverse isotropic material. The device comprises a thin-wall tubular test piece, a fixed outer tube, a rotary inner tube, an upper positioning ring, a lower positioning ring, structure adhesive, an upper connecting disc, a lower connecting disc, a flange and a torque sensor. The transverse isotropic material is processed into the thin-wall tubular test piece, the axial direction is a direction I, a direction II and a direction III (transverse direction) are mutually perpendicular to each other in a cross section, and the mechanical properties of the material are identical. The rotary inner tube and the fixed outer tube are respectively bonded to the inner wall and the outer wall of the test piece, the outer tube is fixed, and a torsion torque is applied to the inner tube, so that the test piece only generates a shearing force in the thin-wall annular cross section. The shearing stress-strain curve of the test piece in the directions (transverse) II and III can be acquired by virtue of the torque of the outer tube, a torsion angle of the inner pipe and the outer wall surface of the inner tube, so that the shearing modulus and shearing strength of the test piece in the transverse isotropic direction can be obtained. The relative twisting of the inner wall and the outer wall of the thin-wall tube is ingeniously utilized, so that the shearing force is only generated in the transverse isotropic direction of the material, the parameter is intuitive and convenient to measure, and the test data is accurate.
Owner:INST OF ENGINEERING THERMOPHYSICS - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products