Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

517 results about "Wave equation" patented technology

The wave equation is an important second-order linear partial differential equation for the description of waves—as they occur in classical physics—such as mechanical waves (e.g. water waves, sound waves and seismic waves) or light waves. It arises in fields like acoustics, electromagnetics, and fluid dynamics.

Ultrasound dynamic elastic imaging probe and method

The invention discloses ultrasound dynamic elastic imaging probe and method. The probe internally comprises an imaging transducer with higher frequency and exciting transducers with lower frequency, wherein the imaging transducer is arranged in the middle, and the exciting transducers are arranged at both sides of the imaging transducer; the imaging transducer and the exciting transducers synchronously work in a coupling mode; ultrasonic radiometric force generated by the exciting transducers generates shear waves in a tissue, and the transverse propagation of the shear waves causes the longitudinal displacement of the tissue; and the imaging transducer transmits ultrasonic waves to detect the longitudinal displacement of the tissue and then reconstructs an elastic physical quantity according to a wave equation so as to acquire an elastic image of the tissue. In the invention, the transducers with lower frequency are used for exciting the tissue to generate the shear waves, and the generated shear waves have strong intensity and wider effective exciting range; and meanwhile, the traditional transducer with higher frequency is used for imaging the shear waves, and the elastic image has high signal to noise ratio and high image quality and conforms to the standard of national acoustic power.
Owner:陈庆武

Method of three-dimensional preserved-amplitude pre-stack time migration

A method of three-dimensional preserved-amplitude pre-stack time migration which is applied to reflected seismic data treatment in seismic prospecting is a pre-stack migration imaging method aiming at the three-dimensional collected seismic data. The technical scheme comprises three aspects: 1) performing the migration amplitude calculation by using a weight coefficient acquired according to a one-way wave equation and the reverse convolution imaging condition of the depth migration, 2) confirming the time varying three-dimensional migration aperture according to the biggest incidence formed underground, and 3) automatically suppressing the migration voice by performing strip attenuation method on the edge of the migration aperture. The method of the invention realizes high-efficient, high SNR (Signal to Noise Ratio) and preserved-amplitude migration imaging by improving the migration aperture, providing a weight coefficient of the preserved-amplitude and suppressing the migration voice in the imaging process. The preserved-amplitude reflective spot collection generated by using the method of the invention can better serve for the oil gas and fluid detection technique for pre-stack inversion. The method of the invention has high application value to oil gas and mine resource exploration.
Owner:CHINA NAT OFFSHORE OIL CORP +2

Method for inverting near-surface velocity model by utilizing preliminary waveforms

The invention discloses a method for inverting a near-surface velocity model by utilizing preliminary waveforms. The method comprises acoustic wave equation-based wave field forward modeling and steepest descent-based waveform inversion technologies, and comprises the following steps of 1, extracting time-domain preliminary waveform records and an initial model; 2, calculating a simulated wave field and a wave field residual by utilizing acoustic wave equation staggered grid finite-difference forward modeling simulation; 3, reversely propagating the wave field residual to obtain a retransmission wave field; 4, calculating a gradient of a target function by utilizing the retransmission wave field and a forward propagation wave field, and calculating an updating step length; 5, updating a speed model; 6, inspecting whether the speed model is consistent with an iteration stopping condition, outputting the speed model if the speed model is consistent with the iteration stopping condition, otherwise returning to the step 2, and continuing iterative updating. According to the method, a wave equation theory-based full-waveform inversion technology is used as reference, and preliminary waves with higher energy and more stable waveforms are used for inversion, so that the multiplicity of solutions of full-waveform inversion is reduced, and the inversion stability and the calculation efficiency are improved; the accuracy of static correction and shallow depth imaging is improved.
Owner:中国石油集团西北地质研究所有限公司

Anisotropic reverse time migration method for quasi-P wave equation in transverse isotropy with a vertical axis of symmetry (VTI) medium

InactiveCN102590859AOvercome precisionOvercoming the limitation of inclination angleSeismic signal processingReverse timeWave equation
The invention relates to an anisotropic reverse time migration method for a quasi-P wave equation in a transverse isotropy with a vertical axis of symmetry (VTI) medium. The method comprises the following steps of: (1) performing discrete differentiation on a first-order quasi-P wave equation in a two-dimensional VTI medium and a perfect matched layer (PML) absorption layer boundary equation by adopting staggered meshes to obtain high-order difference formats of forward continuation and reverse continuation of the two equations; (2) performing numeric calculation to obtain a forwards-continued wave field of a shot point and a reverse time continued wave field of a receiver point, and performing normalized correlation operation on the two wave fields to obtain a migration imaging result of each imaging point in a model; and (3) extracting common imaging point gathers from migration results to obtain a final migration profile. By the method, a problem about the migration imaging of intensive transverse speed variation and a high dip angle stratum can be solved; and the influence of anisotropy of the medium is also taken into account, and the good imaging effect of longitudinal wave data acquired from an anisotropic region can be achieved by an anisotropy-theory-based migration method.
Owner:中国石油集团西北地质研究所有限公司

Method for improving imaging effect of wave equation prestack depth migration

The invention provides a method for improving the imaging effect of wave equation prestack depth migration, wherein the method is used for processing seismic reflection data in seismic exploration so as to improve the application effect of the wave equation prestack depth migration. The method can be used for improving the imaging effect of the wave equation prestack depth migration by constructing the relationship of residual normal moveout between a depth domain and an angle domain and an interval velocity inversion method to directly update a migration velocity model of the wave equation prestack depth migration based on the residual normal moveout of an angle gather. Based on the relationship of residual normal moveout between the depth domain and the angle domain, the method can be used for removing the residual normal moveout, noise and stretching of a migration gather of the wave equation prestack depth migration, thereby improving the signal-to-noise ratio and resolution of a migration stack profile and improving the quality of the angle gather applied to the prestack inversion. Accordingly, the method can be used for well achieving the direct recognition of underground oil, gas or water, can be used for 2D (two-dimensional) and 3D (three-dimensional) wave equation prestack depth migration of the seismic reflection data, and has important application value for exploration of oil-gas and mineral resources.
Owner:INST OF GEOLOGY & GEOPHYSICS CHINESE ACAD OF SCI

Time domain analysis method for transient response of lossy nonuniform multi-conductor transmission lines

InactiveCN102411647AStable and accurate transient response analysis resultsEliminate OscillationSpecial data processing applicationsTransient analysisElectrical conductor
The invention provides a time domain analysis method for a transient response of lossy nonuinform multi-conductor transmission lines and aims to solve the problem that the coupling among the lossy nonuniform multi-conductor transmission lines interferes with the computation in the field of integrity of electronic circuit signals. The method comprises the following steps of: performing differential dispersion on space differential operators in an electric wave equation; and integrating time differential operators in the electrical wave equation by a trapezoidal integration method to ensure that the oscillation, which is caused by a central difference method, of a computed result can be eliminated effectively, voltage and current transient response waveforms of any point on the transmissionlines can be acquired; and the transient analysis of the transmission lines in a longer time period is effective, the waveforms can be analyzed in a longer duration without large errors, and the coupled transmission lines are not needed to be decoupled when a model of the transmission lines is built. By the method, the computational load is reduced, and the simulation efficiency is improved. The method can be used for analyzing the transient response of the lossy nonuinform multi-conductor transmission lines.
Owner:XIDIAN UNIV

Tridimensional integral prestack depth migration method based on maximum energy travel calculation

The invention relates to the prestack depth migration technique during the data processing of petroleum seismic prospecting, including the following concrete steps: establishing depth rate pattern of prestack seismic data; well designing observation grids, and solving wave equation in sphere coordinate system to simulate the communication process of seismic waves; changing and converting the calculated seismic wave field of a frequency domain into a time domain, and fitting the Green function energy spectrum of the seismic wave field in the time domain to detect the arriving time and the vibration amplitude when the maximum energy arrives; transferring the travel time and the vibration amplitude field calculated in the sphere coordinate system to a rectangular coordinate system; accomplishing the maximum energy integral prestack depth migration according to the well calculated travel time and the vibration amplitude; analyzing the operation of speed to the imaging gather of the prestack depth migration to modify the depth rate pattern; and modifying the depth rate pattern by iteration, and outputting the ultimate result until the migration result meets the precision requirement. The invention provides the self-adapting variation difference grid calculation technique so as to achieve the purpose that the difference grids are automatically and gradually thinned along with radius increase, thereby guaranteeing the finite difference calculation precision.
Owner:匡斌
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products