Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

229 results about "Depth imaging" patented technology

Method for inverting near-surface velocity model by utilizing preliminary waveforms

The invention discloses a method for inverting a near-surface velocity model by utilizing preliminary waveforms. The method comprises acoustic wave equation-based wave field forward modeling and steepest descent-based waveform inversion technologies, and comprises the following steps of 1, extracting time-domain preliminary waveform records and an initial model; 2, calculating a simulated wave field and a wave field residual by utilizing acoustic wave equation staggered grid finite-difference forward modeling simulation; 3, reversely propagating the wave field residual to obtain a retransmission wave field; 4, calculating a gradient of a target function by utilizing the retransmission wave field and a forward propagation wave field, and calculating an updating step length; 5, updating a speed model; 6, inspecting whether the speed model is consistent with an iteration stopping condition, outputting the speed model if the speed model is consistent with the iteration stopping condition, otherwise returning to the step 2, and continuing iterative updating. According to the method, a wave equation theory-based full-waveform inversion technology is used as reference, and preliminary waves with higher energy and more stable waveforms are used for inversion, so that the multiplicity of solutions of full-waveform inversion is reduced, and the inversion stability and the calculation efficiency are improved; the accuracy of static correction and shallow depth imaging is improved.
Owner:中国石油集团西北地质研究所有限公司

Correction of multipath interference in time of flight camera depth imaging measurements

A system for determining distances to features in a scene is disclosed. The system includes, among other features, a target portion identifier module, a target surface generator, a reflector selection module, a light transport simulation module, a depth measurement correction generation module, and a distance calculation module. The target portion identifier module is configured to identify a plurality of target portions of the scene. The target surface generator is configured to simulate a plurality of target surfaces. The reflector selection module is configured to select a first plurality of reflector surfaces from the plurality of target surfaces and a second plurality of reflector surfaces from the first plurality of reflector surfaces. The light transport simulation module is configured to, for each target surface included in the target surfaces, simulate a multipath reflection of light emitted by the camera, reflected by the reflector surface to the target surface, and reflected by the target surface to the camera, to generate a simulated multipath response for the target surface. The depth measurement correction generation module is configured to generate a depth measurement correction for each target surface based on the simulated multipath response. The distance calculation module is configured to determine distances for the pixels based on the depth measurement corrections.
Owner:MICROSOFT TECH LICENSING LLC

Binocular stereoscopic observation apparatus, electronic image stereomicroscope, electronic image stereoscopic observation apparatus, and electronic image observation apparatus

A binocular stereoscopic observation apparatus includes an imaging section forming left and right images with parallax in at least two directions and an observing section in which the images with parallax are stereoscopically observed with a viewer's eyes. In this case, the imaging section has an imaging lens forming images of an object at imaging positions on each of left and right optical paths and i imaging positions on the optical axis of the imaging lens, satisfying the following conditions:
L(j−1)<Lj
Ek=Lj−L(j−1)
Dd<Ek
where Lj is a distance, measured along the optical axis, from the imaging lens to the jth imaging position, Ek is a difference between distances, measured along the optical axis, from adjacent imaging positions to the imaging lens, and Dd is an image-side depth of an optical system of the imaging section. The observing section has an eyepiece optical system and i display devices on each of the left and right optical paths so that an image formed at the jth imaging position from the imaging lens on each optical path of the imaging section is displayed on the jth display device from the eyepiece optical system on a corresponding optical path, satisfying the following condition:
Mj<M(j−1)
where Mj is a distance, measured along the optical axis, from the eyepiece optical system to the jth display device. The observing section further has means for superimposing i displayed images on a viewer's pupil. Here, i is an integer of 2 or more and j is an integer satisfying conditions, 1≦j≦i and j≧2.
Owner:OLYMPUS CORP

Exponential fit-adaptive Kalman-based ground-air electromagnetic data de-noising method

The invention relates to an exponential fit-adaptive Kalman-based ground-air electromagnetic data de-noising method. According to the technical scheme of the invention, for single-point electromagnetic data during the ground-air measurement, time windows are determined and then the data are segmented at equal logarithm interval based on the features of electromagnetic data in the ground-air time domain according to the approximate e-index attenuation law, and the time constant value of data in each time frame are extracted as fitting parameters. Meanwhile, the data in each time frame are processed based on the e-exponential fitting method, and fitting output results are adopted as predicted values to be input into a filter. After that, the adaptive scalar Kalman filtering method is applied to filtering the electromagnetic noise in data, and the filtered data are subjected to resistivity-depth imaging. Compared with the existing electromagnetic data filtering method in the ground-air time domain, the above filtering method of the present invention not only effectively suppresses the electromagnetic noise in electromagnetic data in the ground-air time domain, but also fully retains and enhances the effective information in measured data. Therefore, both the signal-to-noise ratio and the quality of electromagnetic data in the ground-air time domain are improved.
Owner:JILIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products