Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6077 results about "Facula" patented technology

A facula /ˈfækjʊlə/ (plural: faculae /ˈfækjʊliː/), Latin for "little torch", is literally a "bright spot". The term has several common technical uses. It is used in planetary nomenclature for naming certain surface features of planets and moons, and is also a type of surface phenomenon on the Sun. In addition, a bright region in the projected field of a light source is sometimes referred to as a facula, and photographers often use the term to describe bright, typically circular features in photographs that correspond to light sources or bright reflections in a defocused image.

Simultaneous multi-spot inspection and imaging

A compact and versatile multi-spot inspection imaging system employs an objective for focusing an array of radiation beams to a surface and a second reflective or refractive objective having a large numerical aperture for collecting scattered radiation from the array of illuminated spots. The scattered radiation from each illuminated spot is focused to a corresponding optical fiber channel so that information about a scattering may be conveyed to a corresponding detector in a remote detector array for processing. For patterned surface inspection, a cross-shaped filter is rotated along with the surface to reduce the effects of diffraction by Manhattan geometry. A spatial filter in the shape of an annular aperture may also be employed to reduce scattering from patterns such as arrays on the surface. In another embodiment, different portions of the same objective may be used for focusing the illumination beams onto the surface and for collecting the scattered radiation from the illuminated spots simultaneously. In another embodiment, a one-dimensional array of illumination beams are directed at an oblique angle to the surface to illuminate a line of illuminated spots at an angle to the plane of incidence. Radiation scattered from the spots are collected along directions perpendicular to the line of spots or in a double dark field configuration.
Owner:KLA TENCOR TECH CORP

Microarray dispensing with real-time verification and inspection

A microarrayer for spotting solution onto a receiving surface in an automated microarray dispensing device. Elements of the present invention include: at least one dispense head for spotting the receiving surface, at least one light source capable of illuminating the receiving surface, at least one camera operating in conjunction with the at least one light source. The at least one camera is capable of acquiring and transmitting surface image data to a computer. The computer is programmed to receive the surface image data and analyze it. The computer will then generate post analysis data based on the analysis of the surface image data. The post analysis data is available for improving the spotting of the solution onto the receiving surface. In a preferred embodiment, the surface image data includes information relating to receiving surface alignment, information relating to spot quality, and receiving surface identification information. In a preferred embodiment, the analysis of the information relating to receiving surface alignment enables the computer to make automatic adjustments to the relative positions of the at least one dispense head and the receiving surface to increase the accuracy of the spotting. In a preferred embodiment, the analysis of the information relating to spot quality identifies a spot as pass or fail. An operator is then able to rework the spot. In a preferred embodiment, the analysis of the receiving surface identification information enables the computer to track each receiving surface. In a preferred embodiment the receiving surface is a plurality of slides.
Owner:AGENA BIOSCI

Galvanometer system correction device and correction method thereof

InactiveCN101804521AGood dynamic tracking abilitySolve the problem of calibration inefficiencyLaser beam welding apparatusGalvanometerCorrection method
The invention provides a galvanometer system correction device and a correction method thereof, and relates to the technical field of precision laser processing equipment. A honeycomb panel is arranged in the middle of the outer frame of a bearing platform, a base plate for corrective is absorbed on the honeycomb panel, and the vacuum chamber of the honeycomb panel is connected with a dust collector; a PSD sensor for measuring the actual output light spot center position of the laser of a galvanometer system is arranged on the vacuum absorption bearing platform; a CCD image acquisition device is arranged above the base plate for correcting, and then is provided with a light intensity regulating module and an image acquisition board card; and a visual measurement algorithm module is arranged. The invention can effectively inhibit the precision drift of the galvanometer system, improve the efficiency of the galvanometer system when in correction model updating and in real-time correction calculation operation, improve the automatic degree of equipment, reduce the labor intensity of an operator, greatly improve the processing precision of equipment, product quality and production efficiency, has simple structure and unique principle and method, and is particularly suitable for precision laser processing equipment to use.
Owner:THE 45TH RES INST OF CETC

LED road lamp and its lens

The invention relates to a lens for LED street lamp. A concave pit is provided in the middle of a first side face of the lens and allowing LED to be arranged therein, and the pit wall of the concave pit forms an incident face; an arcing bulge in the middle of a second side face of the lens forms an emergent face with the shape of pillow; and a totally reflecting face is circumferentially provided around the concave pit on the first side face of the lens. The invention also relates to a LED street lamp, which comprises a frame, and a lighting module arranged on the frame, wherein the lighting module comprises a thermal radiator, a substrate with a LED array, a PCB board with a through-hole array and a lens cap with a lens array. The substrate is provided on the undersurface of the thermal radiator, PCB board is provided on the outer surface of the substrate and connected with each LCD electrode, the lens cap is provided at the outer side of the PCB board, LEDs pass through the through-holes on the PCB board to be accommodated in the concave pit corresponding to the lens, and the lens array is formed by arranging and combining a plurality of above mentioned lenses. The invention can control the distribution of light to form rectangular light spot. The light in the effective illuminated zone is very uniform and there is no parasitic light outside the zone.
Owner:SHENZHEN BANG BELL ELECTRONICS

Measuring device and method for target line-of-sight angel offset and distance

The invention provides a measuring device and method for the target line-of-sight angel offset and distance. The device is composed of a four-quadrant avalanche photodetector, a receiving and sending optical unit, a noise compensation circuit, a four-circuit front amplification circuit, a video amplification circuit, an automatic gain amplification circuit, a peak keeping circuit, an AD conversion circuit, a laser, a dominant wave sampling circuit, a summing circuit, a time identifying circuit, a time test circuit and a digital processing circuit, wherein the receiving and sending optical unit enables narrow pulse laser rays emitted by the laser to be converged on the photoelectric detector to form echo light spots after target reflection, photovoltaic conversion of the four-quadrant avalanche photodetector, front amplification, video amplification and automatic gain amplification are conducted, narrow-pulse peak keeping is conducted, transmission of the AD conversion circuit is conducted, and the digital processing circuit extracts the digital line-of-sight angel offset; summing is conducted on the four-circuit front amplification circuit, the dominant wave sampling circuit is combined, the time identifying circuit determines laser emitting and echo coming and returning time, the time is transmitted to the time identifying circuit to be measured, and the digital processing circuit decodes the corresponding distance.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI

Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed laser beam

In one aspect the invention provides a method for laser induced breakdown of a material with a pulsed laser beam where the material is characterized by a relationship of fluence breakdown threshold (Fth) versus laser beam pulse width (T) that exhibits an abrupt, rapid, and distinct change or at least a clearly detectable and distinct change in slope at a predetermined laser pulse width value. The method comprises generating a beam of laser pulses in which each pulse has a pulse width equal to or less than the predetermined laser pulse width value. The beam is focused above the surface of a material where laser induced breakdown is desired. The region of least confusion (minimum beam waist or average spot size) is above the surface of the material in which laser induced breakdown is desired since the intensity of the beam falls off in the forward direction, preferably the region of the beam at or within the surface is between the region of least confusion and sufficient to remove material and the minimum intensity necessary for laser induced breakdown of the material to be removed, most preferably the region of minimum intensity is disposed at the surface of the material to be removed. The beam may be used in combination with a mask in the beam path. The beam or mask may be moved in the x, y, and Z directions to produce desired features. The technique can produce features smaller than the spot size and Rayleigh range due to enhanced damage threshold accuracy in the short pulse regime.
Owner:GLOBALFOUNDRIES U S INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products