Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

473results about "Conductive material mechanical removal" patented technology

Method for patterning organic materials or combinations of organic and inorganic materials

The present application refers to a method of patterning organic materials or organic/inorganic materials onto a substrate, comprising the following steps: (1) patterning of a water-soluble material “A” onto a surface of the substrate, thereby forming a substrate/material “A” surface; (2) depositing organic or organic/inorganic material “B” onto the substrate/material “A” surface; (3) lifting-off material “A” in aqueous solution; wherein, step (1) comprises the following steps: (1a) patterning of a photoresist material onto the substrate surface, thereby forming a substrate/photoresist material surface; (1b) depositing the water soluble material “A” onto the substrate/photoresist material surface; (1c) lifting-off the photoresist material in an organic solvent; or, alternatively, step (1) comprises the following steps: (1a′) depositing the water-soluble material “A” onto the substrate surface, thereby forming a substrate/material “A” surface; (1b′) patterning the photoresist material onto the substrate/material “A” surface; (1c′) etching the unmasked material “A” in aqueous solution; (1d′) lifting-off the photoresist material in an organic solvent. The present application also refers to the use of said method, to a pattern of organic materials or organic/inorganic materials prepared by said method, and to a substrate carrying such patterns. The application also refers to the use of a patterned nanoparticle film.
Owner:SONY DEUT GMBH

Process for producing resonant tag

A process for producing a resonant tag, wherein a metal foil having a thermal adhesion adhesive applied to at least one face thereof is stamped out into a circuit-like shape and is adhered to a base sheet, the process comprising: stamping out the metal foil into a predetermined shaped metal foil portion (4c) while being passed through a die roll (1) having thereon a stamping blade with a predetermined shape and a transfer roll (2) in contact with the die roll (1) which functions also as a die back-up roll; holding this metal foil portion obtained by the stamping-out operation onto the surface of the transfer roll by suction holes formed in the transfer roll; and thermally adhering the stamped metal foil portion to the base sheet (7) in contact with the transfer roll (2) at its another face by an adhesive roll (3) in contact with the transfer roll through the base sheet. The present invention has such advantages as no damage to the base sheet since the stamping-out operation for the metal foil and the thermal adhesion operation thereof to the base sheet are carried out in separate positions, and no requirement of carrier sheet because the resultant metal foil portion obtained by the stamping-out operation is sucked and held onto the surface of the transfer roll.
Owner:NOVATRON ELECTRONICS HANGZHOU

Generation of viable cell active biomaterial patterns by laser transfer

A method for depositing a transfer material onto a receiving substrate uses a source of laser energy, a receiving substrate, and a target substrate. The target substrate comprises a laser-transparent support having a laser-facing surface and a support surface. The target substrate also comprises a composite material having a back surface in contact with the support surface and a front surface. The composite material comprises a mixture of the transfer material to be deposited and a matrix material. The matrix material is a material that has the property that, when it is exposed to laser energy, it desorbs from the laser-transparent support. The source of laser energy is positioned in relation to the target substrate so that laser energy is directed through the laser-facing surface of the target substrate and through the laser-transparent support to strike the composite material at a defined target location. The receiving substrate is positioned in a spaced relation to the target substrate. The source of laser energy has sufficient energy to desorb the composite material at the defined target location, causing the composite material to desorb from the defined target location and be lifted from the support surface of the laser-transparent support. The composite material is deposited at a defined receiving location on the receiving substrate. The method is useful for creating a pattern of biomaterial on the receiving substrate.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products