Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5365 results about "Ion beam" patented technology

An ion beam is a type of charged particle beam consisting of ions. Ion beams have many uses in electronics manufacturing (principally ion implantation) and other industries. A variety of ion beam sources exists, some derived from the mercury vapor thrusters developed by NASA in the 1960s. The most common ion beams are of singly-charged ions.

Dual plasma beam sources and method

A pair of plasma beam sources are connected across an AC power supply to alternatively produce an ion beam for depositing material on a substrate transported past the ion beams. Each plasma beam source includes a discharge cavity having a first width and a nozzle extending outwardly therefrom to emit the ion beam. The aperture or outlet of the nozzle has a second width, which second width is less than the first width. An ionizable gas is introduced to the discharge cavity. At least one electrode connected to the AC power supply, alternatively serving as an anode or a cathode, is capable of supporting at least one magnetron discharge region within the discharge cavity when serving as a cathode electrode. A plurality of magnets generally facing one another, are disposed adjacent each discharge cavity to create a magnetic field null region within the discharge cavity.
Owner:GENERAL PLASMA

Atomic layer etching apparatus and etching method using the same

An atomic layer etching apparatus using reactive radicals and neutral beams and an etching method using the same are provided. The atomic layer etching apparatus includes a reaction chamber including a stage on which a substrate to be etched is seated, a plasma generator including a plasma chamber configured to supply reactive radicals and neutral beams into the reaction chamber and receive a source gas to generate plasma, an inductive coil configured to surround the exterior of the plasma chamber to generate an electric field, a grid assembly disposed at a lower part of the plasma chamber and including first, second and third grids for extracting ion beams, and a reflective body disposed under the grid assembly and configured to supply electrons to the ion beams to convert the ion beams into neutral beams, a shutter installed between the plasma generator and the reactive chamber and configured to adjust supply of the neutral beams into the reaction chamber, a purge gas supply part configured to supply a purge gas into the reaction chamber, and a controller configured to control supply of the source gas, an etching gas and the purge gas, and opening / closing of the shutter.
Owner:RES & BUSINESS FOUND SUNGKYUNKWAN UNIV

Photoresist cross-linker and photoresist composition comprising the same

The present invention relates to a cross-linker for photoresist compositions which is suitable for a photolithography process using KrF (248 mn), ArF (193 mn), E-beam, ion beam or EUV light sources. Preferred cross-linkers, according to the present invention, comprise a copolymer of (i) a compound represented by following Chemical Formula 1 and / or (ii) one or more compound(s) selected from the group consisting of acrylic acid, methacrylic acid and maleic anhydride. ##STR1## wherein, R.sub.1 and R.sub.2 individually represent straight or branched C.sub.1-10 alkyl, straight or branched C.sub.1-10 ester, straight or branched C.sub.1-10 ketone, straight or branched C.sub.1-10 carboxylic acid, straight or branched C.sub.1-10 acetal, straight or branched C.sub.1-10 alkyl including at least one hydroxyl group, straight or branched C.sub.1-10 ester including at least one hydroxyl group, straight or branched C.sub.1-10 ketone including at least one hydroxyl group, straight or branched C.sub.1-10 carboxylic acid including at least one hydroxyl group, and straight or branched C.sub.1-10 acetal including at least one hydroxyl group; and R.sub.3 represents hydrogen or methyl.
Owner:HYUNDAI ELECTRONICS IND CO LTD

Polymers for photoresist and photoresist compositions using the same

InactiveUS6987155B2Improve the immunityExcellent etching resistance and adhesiveness and photosensitivityElectric discharge tubesPhotomechanical exposure apparatusResistX-ray
The present invention relates to photoresist monomers, polymers formed therefrom and photoresist compositions suitable for photolithography processes employing a DUV light source, such as KrF (249 nm) and ArF(193 nm); EUV; VUV; E-beam; ion-beam; and X-ray. Photoresist monomers of the present invention are represented by the following Chemical Formula 1: wherein, m is 1 or 2.Polymers of the present invention comprise repeating units derived from the comonomer of Chemical Formula 1, preferably together with monomers of the following Chemical Formula 2: wherein,R* is an acid-labile group, andl is 1 or 2.
Owner:HYUNDAI ELECTRONICS IND CO LTD

Ion beam therapy system and its couch positioning method

A therapy system using an ion beam, which can shorten the time required for positioning a couch (patient). The therapy system using the ion beam comprises a rotating gantry provided with an ion beam delivery unit including an X-ray tube. An X-ray detecting device having a plurality of X-ray detectors can be moved in the direction of a rotation axis of the rotating gantry. A couch on which a patient is lying is moved until a tumor substantially reaches an extension of an ion beam path in the irradiating unit. The X-ray tube is positioned on the ion beam path and the X-ray detecting device is positioned on the extension of the ion beam path. With rotation of the rotating gantry, both the X-ray tube emitting an X-ray and the X-ray detecting device revolve around the patient. The X-ray is emitted to the patient and detected by the X-ray detectors after penetrating the patient. Tomographic information of the patient is formed based on signals outputted from the X-ray detectors. Information for positioning the couch is generated by using the tomographic information.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST +1

Patient positioning device and patient positioning method

The invention is intended to always ensure a sufficient level of patient positioning accuracy regardless of the skills of individual operators. In a patient positioning device for positioning a patient couch 59 and irradiating an ion beam toward a tumor in the body of a patient 8 from a particle beam irradiation section 4, the patient positioning device comprises an X-ray emission device 26 for emitting an X-ray along a beam line m from the particle beam irradiation section 4, an X-ray image capturing device 29 for receiving the X-ray and processing an X-ray image, a display unit 39B for displaying a current image of the tumor in accordance with a processed image signal, a display unit 39A for displaying a reference X-ray image of the tumor which is prepared in advance, and a positioning data generator 37 for executing pattern matching between a comparison area A being a part of the reference X-ray image and including an isocenter and a comparison area B or a final comparison area B in the current image, thereby producing data used for positioning of the patient couch 59 during irradiation.
Owner:HITACHI LTD

Particle beam irradiation system and method of adjusting irradiation apparatus

The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment. The Bragg peak spreading device moves to adjust ion beam scatter changes arising out of an SOBP device. These adjustments provide uniformity of radiation dose distribution for the diseased part.
Owner:HITACHI LTD

Patient positioning device and patient positioning method

The invention is intended to always ensure a sufficient level of patient positioning accuracy regardless of the skills of individual operators. In a patient positioning device for positioning a patient couch 59 and irradiating an ion beam toward a tumor in the body of a patient 8 from a particle beam irradiation section 4, the patient positioning device comprises an X-ray emission device 26 for emitting an X-ray along a beam line m from the particle beam irradiation section 4, an X-ray image capturing device 29 for receiving the X-ray and processing an X-ray image, a display unit 39B for displaying a current image of the tumor in accordance with a processed image signal, a display unit 39A for displaying a reference X-ray image of the tumor which is prepared in advance, and a positioning data generator 37 for executing pattern matching between a comparison area A being a part of the reference X-ray image and including an isocenter and a comparison area B or a final comparison area B in the current image, thereby producing data used for positioning of the patient couch 59 during irradiation.
Owner:HITACHI LTD

Particle beam irradiation system and method of adjusting irradiation field forming apparatus

A particle therapy system, as one example of a particle beam irradiation system, comprises a charged particle beam generator and an irradiation field forming apparatus. An ion beam from the charged particle beam generator is irradiated to a diseased part in the body of a patient through the irradiation field forming apparatus. A scattering compensator and a range modulation wheel (RMW) are disposed on the upstream side in a direction of beam advance and are movable along a beam axis. The movement of the scattering compensator and the RMW adjusts a size of the ion beam entering a scatterer device, whereby a change in scattering intensity of the ion beam in the scatterer device is adjusted. As a result, a penumbra in dose distribution is reduced and a more uniform dose distribution in a direction perpendicular to the direction of beam advance is obtained in the diseased part.
Owner:HITACHI LTD

Charged particle beam irradiation system

A charged particle beam irradiation system comprises a high-speed steerer (beam dump device) 100 disposed in a course of a beam transport line 4 through which an ion beam is extracted from a charged-particle beam generator 1. The beam dump device 100 is provided with dose monitoring devices 105, 106 for measuring a dose of an ion beam applied to a beam dump 104 so that the intensity of the ion beam can be measured without transporting the ion beam to irradiation nozzles 15A through 15D. Thus, the system is capable of adjusting the intensity of an ion beam extracted from a synchrotron without operating each component of a beam transport line, and an irradiation nozzle.
Owner:HITACHI LTD

Etching apparatus using neutral beam and method thereof

An etching apparatus using a neutral beam includes an electron emission unit to convert an ion beam, extracted from plasma by a plurality of grids, into a neutral beam by colliding the ion beam with electrons to prevent the ion beam from physically colliding with the electron emission unit, thus preventing the damage to a neutralization unit and generation of foreign substances with a simple structure. Further, the etching apparatus converts the ion beam into the neutral beam at a high neutralizing efficiency without causing directionality and energy losses, and generates a neutral beam having a large area, thus uniformly etching a semiconductor wafer.
Owner:SAMSUNG ELECTRONICS CO LTD

Rotating irradiation apparatus

A rotating irradiation apparatus includes a rotating gantry 3 including a front ring 19 and a rear ring 20 and is provided with a beam delivery device 11 and an irradiation device 4. The beam delivery device 11 delivers an ion beam used for particle radiotherapy. Radial support devices 61A and 61B support the front ring 19 and radial support devices 61A and 61B support the rear ring 20. Each radial support device includes a linear guide 41, an upper support structure disposed above the linear guide 41, and a lower support structure disposed below the linear guide 41. The upper support structure is movably mounted on the lower support structure and is movable in the direction of the rotational axis of the rotating gantry 3.
Owner:HITACHI LTD

Particle beam irradiation system

It is an object of the present invention to provide a charged particle beam extraction method and particle beam irradiation system that make it possible to exercise intensity control over an extracted ion beam while a simple device configuration is employed. To accomplish the above object, there is provided a particle beam irradiation system comprising: a synchrotron for accelerating and extracting an charged particle beam; an irradiation apparatus for extracting the charged particle beam that is extracted from the synchrotron; first beam intensity modulation means for controlling the beam intensity of the charged particle beam extracted from the synchrotron during an extraction control period of an operation cycle of the synchrotron; and second beam intensity modulation means for controlling the beam intensity during each of a plurality of irradiation periods contained in the extraction control period of the operation cycle.
Owner:HITACHI LTD

Particle beam irradiation system

A particle beam irradiation system capable of ensuring a more uniform dose distribution at an irradiation object even when a certain time is required from output of a beam extraction stop signal to the time when extraction of a charged particle beam from an accelerator is actually stopped. The particle beam irradiation system comprises a synchrotron, an irradiation device including scanning magnets and outputting an ion beam extracted from the synchrotron, and a control unit. The control unit stops the output of the ion beam from the irradiation device in accordance with the beam extraction stop signal, controls the scanning magnets to change an exposure position in a state in which the output of the ion beam is stopped, and after the change of the exposure position, starts the output of the ion beam from the irradiation device again. The control unit further outputs a next beam extraction stop signal when an increment of dose integrated from the time of a preceding beam extraction stop signal as a start point reaches a setting dose stored in advance.
Owner:HITACHI LTD

Synchronized x-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises an X-ray system that is orientated to provide X-ray images of a patient in the same orientation as viewed by a proton therapy beam, is synchronized with patient respiration, is operable on a patient positioned for proton therapy, and does not interfere with a proton beam treatment path. Preferably, the synchronized system is used in conjunction with a negative ion beam source, synchrotron, and / or targeting method apparatus to provide an X-ray timed with patient respiration and performed immediately prior to and / or concurrently with particle beam therapy irradiation to ensure targeted and controlled delivery of energy relative to a patient position resulting in efficient, precise, and / or accurate noninvasive, in-vivo treatment of a solid cancerous tumor with minimization of damage to surrounding healthy tissue in a patient using the proton beam position verification system.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Ion source

An ion source 10 for producing a beam of ions from a plasma is disclosed. A plasma is created at the center of an anode 12 by collisions between energetic electrons and molecules of an ionizable gas. The electrons are sourced from a cathode filament 11 and are accelerated to the anode 12 by an applied electric potential. A projection of the anode and a magnetic field having an axis aligned with the axis of the anode act together to concentrate the flow of electrons to the center of the anode 12. The ionizable gas is introduced into an ionization region 13 of the ion source 10 at the point of concentrated electron flow. Ions created in the ionization region are expelled from the ion source as an ion beam centred on the axis of the magnetic field. The surfaces of the anode are coated with an electrically conductive non-oxidising layer of Titanium Nitride to prevent a build up of an insulating layer on the anode.
Owner:SAINTECH

Method and system for providing a magnetic recording transducer using an ion beam scan polishing planarization

A method and system for fabricating a read sensor on a substrate for a read transducer is described. A read sensor stack is deposited on the substrate. A mask is provided on the on the read sensor stack. The mask has a pattern that covers a first portion of the read sensor stack corresponding to the read sensor, covers a second portion of the read sensor stack distal from the read sensor, and exposes a third portion of the read sensor stack between the first and second portions. The read sensor is defined from the read sensor stack. A hard bias layer is deposited. An aperture free mask layer including multiple thicknesses is provided. A focused ion beam scan (FIBS) polishing step is performed on the mask and hard bias layers to remove a portion of the mask and hard bias layers based on the thicknesses.
Owner:WESTERN DIGITAL TECH INC

Method and system for providing a read sensor in a magnetic recording transducer using focused ion beam scan polishing

A read sensor for a read transducer is fabricated. The read transducer has field and device regions. A read sensor stack is deposited. A mask covering part of the stack corresponding to the read sensor is provided. The read sensor having inboard and outboard junction angles is defined from the stack in a track width direction. A critical junction (CJ) focused ion beam scan (FIBS) polishing that removes part of the read sensor based on the junction angles is performed. A hard bias structure is deposited and the transducer planarized. A remaining portion of the mask is removed. A stripe height mask covering part of the read sensor and hard bias structure in a stripe height direction is provided. The read sensor stripe height is defined. A tunneling magnetoresistance (TMR) FIBS polishing that removes part of the stack in the field region is performed. An insulating layer is provided.
Owner:WESTERN DIGITAL TECH INC

Method And System For Production Of Radioisotopes, And Radioisotopes Produced Thereby

A system and method for the production of radioisotopes by the transmutation of target isotopic material bombarded by a continuous wave particle beam. An ion source generates a continuous wave ion beam, irradiating an isotope target, which is cooled by transferring heat away from the target at heat fluxes of at least about 1 kW / cm2.
Owner:SOREQ NUCLEAR RES CENT ISRAEL ATOMIC ENERGY COMMISSION

Ion beam therapy system and its couch positioning method

A therapy system using an ion beam, which can shorten the time required for positioning a couch (patient). The therapy system using the ion beam comprises a rotating gantry provided with an ion beam delivery unit including an X-ray tube. An X-ray detecting device having a plurality of X-ray detectors can be moved in the direction of a rotation axis of the rotating gantry. A couch on which a patient is lying is moved until a tumor substantially reaches an extension of an ion beam path in the irradiating unit. The X-ray tube is positioned on the ion beam path and the X-ray detecting device is positioned on the extension of the ion beam path. With rotation of the rotating gantry, both the X-ray tube emitting an X-ray and the X-ray detecting device revolve around the patient. The X-ray is emitted to the patient and detected by the X-ray detectors after penetrating the patient. Tomographic information of the patient is formed based on signals outputted from the X-ray detectors. Information for positioning the couch is generated by using the tomographic information.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST +1

Device And Method For Measuring Characteristics Of An Ion Beam

The present invention relates to a detector for measuring characteristics of an energetic particle beam generated by a radiation source, the detector including means to vary the incoming particle beam energy; a plurality of sensors arranged in parallel; and processing means capable of processing signals coming from said sensors in correlation with said energy variation.
Owner:ION BEAM APPL

Techniques for forming shallow junctions

Techniques for forming shallow junctions are disclosed. In one particular exemplary embodiment, the techniques may be realized as a method for forming shallow junctions. The method may comprise generating an ion beam comprising molecular ions based on one or more materials selected from a group consisting of: digermane (Ge2H6), germanium nitride (Ge3N4), germanium-fluorine compounds (GFn, wherein n=1, 2, or 3), and other germanium-containing compounds. The method may also comprise causing the ion beam to impact a semiconductor wafer.
Owner:VARIAN SEMICON EQUIP ASSOC INC

Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises an X-ray system that is orientated to provide X-ray images of a patient in the same orientation as viewed by a proton therapy beam, is synchronized with patient respiration, is operable on a patient positioned for proton therapy, and does not interfere with a proton beam treatment path. Preferably, the synchronized system is used in conjunction with a negative ion beam source, synchrotron, and / or targeting method apparatus to provide an X-ray timed with patient respiration and performed immediately prior to and / or concurrently with particle beam therapy irradiation to ensure targeted and controlled delivery of energy relative to a patient position resulting in efficient, precise, and / or accurate noninvasive, in-vivo treatment of a solid cancerous tumor with minimization of damage to surrounding healthy tissue in a patient using the proton beam position verification system.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Pulsed ion beam control of solid state features

For controlling a physical dimension of a solid state structural feature, a solid state structure is provided, having a surface and having a structural feature. The structure is exposed to a first periodic flux of ions having a first exposure duty cycle characterized by a first ion exposure duration and a first nonexposure duration for the first duty cycle, and then at a second periodic flux of ions having a second exposure duty cycle characterized by a second ion exposure duration and a second nonexposure duration that is greater than the first nonexposure duration, for the second duty cycle, to cause transport, within the structure including the structure surface, of material of the structure to the structural feature in response to the ion flux exposure to change at least one physical dimension of the feature substantially by locally adding material of the structure to the feature.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Charged particle beam extraction system and method

A charged particle beam extraction system and method capable of ensuring higher safety when extraction of an ion beam is on / off-controlled during irradiation of the ion beam for treatment. The charged particle beam extraction system comprises a charged particle beam generator including a synchrotron, a range modulation wheel (RMW) for forming a Bragg peak width of a charged particle beam extracted from the charged particle beam generator, a gate signal generator for controlling start and stop of extraction of the charged particle beam from the charged particle beam generator in accordance with a rotational angle of the RMW, and an irradiation control / determination section for determining whether the start and stop of extraction of the charged particle beam is controlled at desired timing by the gate signal generator.
Owner:HITACHI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products