Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1408 results about "Solid mass" patented technology

Solid lipid particles, particles of bioactive agents and methods for the manufacture and use thereof

InactiveUS6207178B1Suppresses decrease in specific surface areaImprove bioavailabilityBiocideCosmetic preparationsLipid formationLipid particle
The present invention is in the area of administration forms and delivery systems for drugs, vaccines and other biologically active agents. More specifically the invention is related to the preparation of suspensions of colloidal solid lipid particles (SLPs) of predominantly anisometrical shape with the lipid matrix being in a stable polymorphic modification and of suspensions of micron and submicron particles of bioactive agents (PBAs); as well as to the use of such suspensions or the lyophilizates thereof as delivery systems primarily for the parenteral administration of preferably poorly water-soluble bioactive substances, particularly drugs, and to their use in cosmetic, food and agricultural products. SLPs and PBAs are prepared by the following emulsification process: (1) A solid lipid or bioactive agent or a mixture of solid lipids or bioactive agents is melted. (2) Stabilizers are added either to the lipid or bioactive agent and to the aqueous phase or to the aqueous phase only depending on their physicochemical characteristics. Stabilizers may also be added or exchanged after homogenization. (3) Drugs or other bioactive substances to be incorporated into the SLPs may be melted together with the lipids if the physicochemical characteristics of the substance permit or may be dissolved, solubilized or dispersed in the lipid melt before homogenization. (4) The aqueous phase is heated to the temperature of the melt before mixing and may contain for example stabilizers, isotonicity agents, buffering substances, cryoprotectants and/or preservatives. (5) The molten lipid compounds and the bioactive agents are emulsified in an aqueous phase preferably by high-pressure homogenization.
Owner:PHARMACIA AB

Composition for controlling wellbore fluid and gas invasion and method for using same

The disclosure is directed to a composition for controlling wellbore fluid and gas invasion including methods for using said composition. The composition of the invention is a flowable slurry preferably comprising about 70 to 30% by weight of magnesium oxychloride and about 70 to 30% by weight of water. The composition is a flowable slurry at composition temperatures below about 60° C. and sets to form a substantially solid mass upon reaching a composition temperature of about 60-68° C. The phase transition is rapid, thereby limiting or avoiding formation of gel states which contribute to incomplete wellbore seals. The rapid set of the slurry further avoids invasive contamination of earthen formations surrounding the wellbore. The composition has a near-linear relationship between the time required for the phase transition to occur and the composition temperature at which the phase transition occurs. This advantageous property permits the composition set time to be accurately determined and modified as required through the addition of accelerators and inhibitors. The phase transition occurs predictably at high pressures typical of those encountered in wellbore operations. Additives may be included to modify the properties of the composition. The method includes use of the composition to control the loss of fluids and gases from the wellbore.
Owner:HALLIBURTON ENERGY SERVICES INC

Encapsulation of sensitive liquid components into a matrix to obtain discrete shelf-stable particles

InactiveUS7201923B1Improve hydrophobicityPrevent and delays penetration of waterPowder deliveryBiocideSolid particleHeat sensitive
A liquid encapsulant component which contains an active, sensitive encapsulant, such as a live microorganism or an enzyme dissolved or dispersed in a liquid plasticizer is admixed with a plasticizable matrix material. The matrix material is plasticizable by the liquid plasticizer and the encapsulation of the active encapsulant is accomplished at a low temperature and under low shear conditions. The active component is encapsulated and / or embedded in the plasticizable matrix component or material in a continuous process to produce discrete, solid particles. The liquid content of the liquid encapsulant component provides substantially all or completely all of the liquid plasticizer needed to plasticize the matrix component to obtain a formable, extrudable, cuttable, mixture or dough. Removal of liquid plasticizer prior to extrusion is not needed to adjust the viscosity of the mixture for formability. Release of an active component from the matrix may be delayed or controlled over time so that the active component is delivered when and where it is needed to perform its intended function. Controlled release, discrete, solid particles which contain an encapsulated and / or embedded component such as a heat sensitive or readily oxidizable pharmaceutically, biologically, or nutritionally active component are continuously produced without substantial destruction of the matrix material or encapsulant.
Owner:GENERAL MILLS INC

Method for analyzing pore structure of solid material based on microscopic image

InactiveCN101639434ACalculated pore sizeCalculate porosityPermeability/surface area analysis3D-image renderingPorosityMicroscopic image
The invention provides a method for analyzing the pore structure of solid material based on microscopic image, belonging to the technical field for analyzing the pore structure of the solid material.The method is characterized of: obtaining the CT single cross section image of the solid material by microscopic CT scanning; using computer language to digitally image process the CT single cross section image; taking the pixel side of the image as the size of hole diameter; computing the hole diameter of the solid material, porosity and change regularity of the hole diameter and the porosity based on the microscopic CT single image; selecting the CT single image after processing a plurality of digital image; generating a CT image sequence; three dimensionally rebuilding the CT single image with a volume rendering algorithm in a visual rebuilding algorithm; generating the three dimensional digital image of the solid material; and computing the hole diameter of the solid material, the porosity and the change regularity of the hole diameter and the porosity based on the microscopic CT single image. The method is widely used for analyzing and computing the hole size and the porosity of the solid material under the various hole sizes of the solid material.
Owner:TAIYUAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products