Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2300 results about "Multi spectral" patented technology

A multispectral image is one that captures image data at specific frequencies across the electromagnetic spectrum, the visible light range, and infrared. Spectral imaging sees beyond what human eye can perceive. A multispectral image is one that captures image data at specific frequencies across the electromagnetic spectrum,...

Automatic mask design and registration and feature detection for computer-aided skin analysis

ActiveUS20090196475A1Avoiding skin regions not useful or amenableCharacter and pattern recognitionDiagnostic recording/measuringDiagnostic Radiology ModalityNose
Methods and systems for automatically generating a mask delineating a region of interest (ROI) within an image containing skin are disclosed. The image may be of an anatomical area containing skin, such as the face, neck, chest, shoulders, arms or hands, among others, or may be of portions of such areas, such as the cheek, forehead, or nose, among others. The mask that is generated is based on the locations of anatomical features or landmarks in the image, such as the eyes, nose, eyebrows and lips, which can vary from subject to subject and image to image. As such, masks can be adapted to individual subjects and to different images of the same subjects, while delineating anatomically standardized ROIs, thereby facilitating standardized, reproducible skin analysis over multiple subjects and/or over multiple images of each subject. Moreover, the masks can be limited to skin regions that include uniformly illuminated portions of skin while excluding skin regions in shadow or hot-spot areas that would otherwise provide erroneous feature analysis results. Methods and systems are also disclosed for automatically registering a skin mask delineating a skin ROI in a first image captured in one imaging modality (e.g., standard white light, UV light, polarized light, multi-spectral absorption or fluorescence imaging, etc.) onto a second image of the ROI captured in the same or another imaging modality. Such registration can be done using linear as well as non-linear spatial transformation techniques.
Owner:CANFIELD SCI

High-resolution polarization-sensitive imaging sensors

An apparatus and method to determine the surface orientation of objects in a field of view is provided by utilizing an array of polarizers and a means for microscanning an image of the objects over the polarizer array. In the preferred embodiment, a sequence of three image frames is captured using a focal plane array of photodetectors. Between frames the image is displaced by a distance equal to a polarizer array element. By combining the signals recorded in the three image frames, the intensity, percent of linear polarization, and angle of the polarization plane can be determined for radiation from each point on the object. The intensity can be used to determine the temperature at a corresponding point on the object. The percent of linear polarization and angle of the polarization plane can be used to determine the surface orientation at a corresponding point on the object. Surface orientation data from different points on the object can be combined to determine the object's shape and pose. Images of the Stokes parameters can be captured and viewed at video frequency. In an alternative embodiment, multi-spectral images can be captured for objects with point source resolution. Potential applications are in robotic vision, machine vision, computer vision, remote sensing, and infrared missile seekers. Other applications are detection and recognition of objects, automatic object recognition, and surveillance. This method of sensing is potentially useful in autonomous navigation and obstacle avoidance systems in automobiles and automated manufacturing and quality control systems.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Multispectral imaging for quantitative contrast of functional and structural features of layers inside optically dense media such as tissue

A method for the evaluation of target media parameters in the visible and near infrared is disclosed. The apparatus comprises a light source, an illuminator/collector, optional illumination wavelength selector, an optional light gating processor, an imager, detected wavelength selector, controller, analyzer and a display unit. The apparatus illuminates an in situ sample of the target media in the visible through near infrared spectral region using multiple wavelengths and gated light. The sample absorbs some of the light while a large portion of the light is diffusely scattered within the sample. Scattering disperses the light in all directions. A fraction of the deeply penetrating scattered light exits the sample and may be detected in an imaging fashion using wavelength selection and an optical imaging system. The method extends the dynamic range of the optical imager by extracting additional information from the detected light that is used to provide reconstructed contrast of smaller concentrations of chromophores. The light detected from tissue contains unique spectral information related to various components of the tissue. Using a reiterative calibration method, the acquired spectra and images are analyzed and displayed in near real time in such a manner as to characterize functional and structural information of the target tissue.
Owner:APOGEE BIODIMENSIONS

Multispectral therapeutic light source

ActiveUS20140288351A1High cost-effectiveHigh quantum-efficiencyElectrotherapySurgeryUltravioletPeak value
A light source apparatus including light spectrum-converting materials that emit light primarily over large portions of the 360 nm-480 nm and the 590-860 nm spectral range is provided. This apparatus provides a cooled, high-luminance, high-efficiency light source that can provide a broader spectrum of light within these spectral ranges than has been cost-practical by using many different dominant peak emission LEDs. Up to 15% of the output radiant power may be in the spectral range 350-480 nm in one embodiment of this device, unless a specific separate source and lamp operating mode is provided for the violet and UV. Control methods for light exposure dose based on monitoring and controlling reflected or backscattered light from the illuminated surface and new heat management methods are also provided. This flexible or rigid light source may be designed into a wide range of sizes or shapes that can be adjusted to fit over or around portions of the bodies of humans or animals being treated, or mounted in such a way as to provide the special spectrum light to other materials or biological processes. This new light source can be designed to provide a cost-effective therapeutic light source for photodynamic therapy, intense pulsed light, for low light level therapy, diagnostics, medical and other biological applications as well as certain non-organic applications.
Owner:JONES GARY W

Multispectral image radiation correction method based on absolute radiometric calibration

ActiveCN102901516AImprove the accuracy of quantitative inversionQuantitative inversion is accurateMeasurement devicesPhysicsCorrection method
The invention discloses a multispectral image radiation correction method based on absolute radiometric calibration, comprising the following steps: (1) conducting relative radiation correction; (2) conducting laboratory absolute radiometric calibration: constructing a laboratory radiance-image DN value look-up table of integrating spheres; (3) conducting absolute radiation correction based on the laboratory absolute calibration results: based on the laboratory radiance-image DN value look-up table, carrying out laboratory absolute radiation correction on the relative radiation correction images; (4) conducting ground calibration field on-orbit absolute radiation calibration: constructing a ground calibration field target on-orbit radiance- laboratory radiance look-up table; and (5) conducting absolute radiation correction based on the on-orbit absolute calibration results: based on the on-orbit radiance- laboratory radiance look-up table, carrying out on-orbit absolute radiation calibration on the laboratory absolute radiation correction images. According to the invention, the multispectral images are accurately converted into ground object real radiance from DN values, thus the colors of the multispectral images really reflect the ground object real spectrum characteristics, and the foundation for remote sensing quantification application is laid.
Owner:SPACE STAR TECH CO LTD

Multispectral imager with hybrid double layer filter array

Hybrid dual layer filter can be employed can be employed as filters. A multispectral imager comprises a two layer filter array monolithically integrated onto detector array, a top layer of pigment based filter and a lower layer of plasmonic nano-optic filter to make a low cost and narrow bandwidth filter without side leaking or side peaks. Multispectral imager comprises a microlens array, a mosaic patterned optical filter array underlying the microlens array and including a two-dimensional repetition of a unit mosaic pattern, and a pixelated detector array underlying the mosaic patterned optical filter array. The unit mosaic pattern comprises an array of composite filter elements having different peaks in a respective transmittance spectrum. Each composite filter element comprises a pigment based filter portion and a plasmonic nano-optic filter portion.
Owner:NANOLAMBDA KOREA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products