Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

474 results about "Two dimensional imaging" patented technology

Two-dimensional imaging. An MRI term for the Fourier transformation process, which reconstructs the detected frequency and phase-encoded image information—which are rotated 90° from each other—into a usable image.

Cardiac and or respiratory gated image acquisition system and method for virtual anatomy enriched real time 2d imaging in interventional radiofrequency ablation or pace maker replacement procecure

The present invention refers to the field of cardiac electrophysiology (EP) and, more specifically, to image-guided radio frequency ablation and pacemaker placement procedures. For those procedures, it is proposed to display the overlaid 2D navigation motions of an interventional tool intraoperatively obtained from the same projection angle for tracking navigation motions of an interventional tool during an image-guided intervention procedure while being navigated through a patient's bifurcated coronary vessel or cardiac chambers anatomy in order to guide e.g. a cardiovascular catheter to a target structure or lesion in a cardiac vessel segment of the patient's coronary venous tree or to a region of interest within the myocard. In such a way, a dynamically enriched 2D reconstruction of the patient's anatomy is obtained while moving the interventional instrument. By applying a cardiac and / or respiratory gating technique, it can be provided that the 2D live images are acquired during the same phases of the patient's cardiac and / or respiratory cycles. Compared to prior-art solutions which are based on a registration and fusion of image data independently acquired by two distinct imaging modalities, the accuracy of the two-dimensionally reconstructed anatomy is significantly enhanced.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Time-resolved single-photon counting two-dimensional imaging system and method

The invention provides a time-resolved single-photon counting two-dimensional imaging system and a time-resolved single-photon counting two-dimensional imaging method and belongs to the technical field of extremely-weak light detection. A trigger 2 is triggered to start sampling, centralized sampling is performed at t time intervals, and measurement and counting are performed if light comes at the intervals, so that time resolving of an extremely-weak light object is realized, and a time sequence image is generated. Imaging is performed on the basis of a compressive sensing (CS) theory, a digital micro-mirror device (DMD5) performs linear random projection on a compressible two-dimensional image, the compressible two-dimensional image is optically modulated and then synchronously detected by using a single-photon counter, and a high-resolution extremely-weak light image can be reconstructed by a small amount of sampling operation. The measurement process is linear and non-adaptive, the reconstruction process is non-linear, and the invention has the advantages of high generality, robustness, expandability, superposition and computation asymmetry, and can be widely applied to the fields of life science, medical imaging, data acquisition, communication, astronomy, military affairs, hyper-spectral imaging and quantum measurement.
Owner:NAT SPACE SCI CENT CAS

3D imaging method and system based on LED array common lens TOF depth measurement

InactiveCN101866056AImproved Gain Control AccuracyGet fastOptical elements3d imageEffect light
The invention discloses a 3D imaging method and system based on LED array common lens TOF depth measurement, which is characterized in that a 2D LED array is used as the lighting source, only one LED is in the lightened state every time, the modulated light emitted by the LED is projected onto the surface of the target by a projecting lens, a photoelectric receiver receives the scattered light on the surface of the target, measures the round-trip time of flight (TOF) from the light source to the target, acquires the LED depth pixel value in the lightened state according to the round-trip TOF and completes measurement of the single LED depth pixel value; time division scanning is carried out on the whole 2D LED array, the measurement process of the single LED depth pixel value is repeated and all the LED depth pixel values are acquired and are combined to generate the depth image of the target; a 2D image sensor acquires the 2D image of the target after the scattered light on the surface of the target passes through a 2D imaging lens; the projecting lens and the 2D imaging lens are the same; and the 2D image and the depth image are fused to generate the 3D image of the target. The depth image is fast in acquisition and the depth measurement resolution is high.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Telescopic array type portable MIMO-SAR (multiple-input multiple-output synthetic aperture radar) measurement radar system and imaging method thereof

The invention discloses a telescopic array type portable MIMO-SAR (multiple-input multiple-output synthetic aperture radar) measurement radar system and an imaging method thereof. The system comprises a telescopic MIMO antenna array, a radar transmitting/receiving machine, a control and processing computer, a liftable antenna frame and the like. The system has the advantages in an aspect of meeting field diagnosis and measurement of scattering properties in using and maintenance processes of a low detectable target that firstly, quick detection, positioning and imaging diagnosis of an abnormal scattering part of the low detectable target can be realized, that is, an MIMO-SAR different from a linear guiderail SAR in mechanical scanning imaging can finish high-resolution two-dimensional imaging of a measured target through one-time or two-time 'snapshot' electric scanning imaging; secondly, the requirement on a target test site environment is lowered, that is, guide rails for precision mechanical screening measurement do not need to be mounted in a target test site, so that the requirement on the site test environment in imaging diagnosis and measurement operation processes is greatly lowered; thirdly, the antenna array is telescopic, so that miniaturization, quick unfolding and folding as well as portability of the measurement radar system can be easily realized.
Owner:BEIHANG UNIV

Non-uniform distributed multi-baseline synthetic aperture radar three-dimensional imaging method

The invention discloses a non-uniform distributed multi-baseline synthetic aperture radar three-dimensional imaging method, and relates to the three-dimensional imaging technology. The method comprises the following steps of: performing two-dimensional focusing on primary echo data obtained by flying observation at each time to obtain single-look complex images; registering sequences of the single-look complex images to acquire non-uniform sampling data of an observation target under different visual angles; removing inclination aiming at the non-uniform sampling data to perform phase modulation; then estimating a spatial spectrum of the primary uniform sampling data by using a missing data-based amplitude phase estimation method and maximizing mathematically expected iterative operation of observation data so as to implement imaging of a target height direction; and finishing three-dimensional imaging of the target by combining a two-dimensional target image obtained in two-dimensional imaging of each track. The method for performing the imaging of the height direction based on the amplitude phase estimation method reduces elevation blur caused by multi-baseline non-uniform distribution and acquires clear high-resolution target three-dimensional imaging results.
Owner:INST OF ELECTRONICS CHINESE ACAD OF SCI

Method for comprehensively measuring reflectivity

The invention relates to a method for comprehensively measuring reflectivity, which comprises the following steps: dividing continuous incident laser beams into a reference beam and a detection beam, wherein the reference beam is focused on a photoelectric detector for direct detection and the detection beam is injected into an optical resonant cavity; using a cavity ring-down technology to measure an optical element with reflectivity more than 99%, respectively measuring a ring-down time tau 0 of an original optical resonant cavity output signal and a ring-down time tau 1 of the measured optical resonant cavity output signal after an optical element to be measured is added, and calculating the reflectivity R of the optical element to be measured; using the spectrophotometry to measure the reflectivity of the optical element to be measured when the R value is less than 99%; moving away an output cavity mirror; focusing detecting light reflected by a measuring mirror on the photoelectric detector for detecting while recording a light intensity signal ratio of the detection beam to the reference beam; and calibrating to further obtain the reflectivity R of the optical element to be measured. The device for measuring reflectivity can be used for measuring optical elements with any reflectivity and also can be used for realizing the high-resolution two-dimensional imaging of the reflectivity distribution of a large-aperture optical element.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI

Device for two-dimensional imaging of scenes by microwave scanning

InactiveUS8009116B2Acceptable image qualityHigh processing expenditure and expenditureAntennasRadio wave reradiation/reflectionContinuous scanningEarth observation
For two-dimensional imaging of scenes through continuous passive or active microwave scanning, use is made of a fully mechanized directional antenna array comprising a main reflector (1), a primary radiator array (3) and a subreflector (2) having a small size in comparison to the main reflector and being tilted relative to the optical axis (7) of the directional antenna array. First drive means (8) are operative to rotate the subreflector (2) about the optical axis (7), and second drive means (17,18) are operative to move the total directional antenna array in a direction approximately vertical to the optical axis (7). The moving speed of the subreflector (2) is very high in comparison to that of the total directional antenna array. The shape of the main reflector (1), the shape of the subreflector (2), the primary radiator (3), the distance between primary radiator and subreflector and the distance between subreflector and main reflector as focusing parameters are attuned to each other in such a manner that, for a given scene distance, an optimum focusing and an optimum size of the field of view are achieved. The focusing parameters and the moving speeds of the two drive means are set in a manner allowing for a gapless, continuous scanning of the scene with the aid of the focusing spot (12) moving at the scene distance. Applicability in remote investigation, particularly in earth observation and in safety technology.
Owner:DEUTSCHES ZENTRUM FUER LUFT & RAUMFAHRT EV

SAR (synthetic aperture radar) tomography super-resolution imaging method

The invention discloses an SAR (synthetic aperture radar) tomography super-resolution imaging method. The SAR tomography super-resolution imaging method includes registering obtained two-dimensional imaging results of various SAR tomography baselines, creating height-direction signals pixel by pixel according to the sequence of the baselines, realizing frequency modulation correction and constructing a redundancy matrix; and modeling a height-direction imaging problem into a sparse signal reconstruction problem according to the characteristic of sparsity of height-direction scattering coefficients, computing a sparse solution of the spares signal reconstruction problem by means of iteration by the aid of the constraint condition of the minimum weighted norm, and realizing height-dimensional imaging of an object. The method is applied to SAR tomography height-dimensional imaging, and problems that the quantity of two-dimensional SAR images in the same area and (/or) trajectory distribution is uneven, and only a few parts of trajectory intervals (baselines) meet the Nyquist sampling theory are solved. In addition, by the aid of the method, energy of the object is more concentrated, namely, the resolution is improved, and the problem that the quantity of baselines is small is solved.
Owner:UNIV OF ELECTRONIC SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products