Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1286 results about "Imaging spectrometer" patented technology

An imaging spectrometer is an instrument used in hyperspectral imaging and imaging spectroscopy to acquire a spectrally-resolved image of an object or scene, often referred to as a datacube due to the three-dimensional representation of the data. Two axes of the image corresponds to vertical and horizontal distance and the third to wavelength. The principle of operation is the same as that of the simple spectrometer, but special care is taken to avoid optical aberrations for better image quality.

Multi-channel, multi-spectrum imaging spectrometer

A multi-spectrum, multi-channel imaging spectrometer includes two or more input slits or other light input devices, one for each of two or more input channels. The input slits are vertically and horizontally displaced, with respect to each other. The vertical displacements cause spectra from the two channels to be vertically displaced, with respect to each other, on a single image sensor on a stationary image plane. The horizontal displacements cause incident light beams from the respective input channels to strike a convex grating at different respective incidence angles and produce separate spectra having different respective spectral ranges. A retroflective spectrometer includes a convex grating that, by diffraction, disperses wavelengths of light at different angles and orders approximately back along an incident light beam. A single concave mirror reflects both the input channel and the dispersed spectrum. A prism, set of mirrors, beam splitters or other optical element(s) folds the input channel(s) of a spectrometer to enable the input(s) to be moved away from the plane of the image sensor, thereby enabling a large camera or other device to be attached to the spectrometer without blocking the input(s). A mounting mechanism enables a curved optical element to be adjusted through lateral and transverse translations, without requiring a gimbal mount.
Owner:HEADWALL PHOTONICS

Multi-channel, multi-spectrum imaging spectrometer

A multi-spectrum, multi-channel imaging spectrometer includes two or more input slits or other light input devices, one for each of two or more input channels. The input slits are vertically and horizontally displaced, with respect to each other. The vertical displacements cause spectra from the two channels to be vertically displaced, with respect to each other, on a single image sensor on a stationary image plane. The horizontal displacements cause incident light beams from the respective input channels to strike a convex grating at different respective incidence angles and produce separate spectra having different respective spectral ranges. A retroflective spectrometer includes a convex grating that, by diffraction, disperses wavelengths of light at different angles and orders approximately back along an incident light beam. A single concave mirror reflects both the input channel and the dispersed spectrum. A prism, set of mirrors, beam splitters or other optical element(s) folds the input channel(s) of a spectrometer to enable the input(s) to be moved away from the plane of the image sensor, thereby enabling a large camera or other device to be attached to the spectrometer without blocking the input(s). A mounting mechanism enables a curved optical element to be adjusted through lateral and transverse translations, without requiring a gimbal mount.
Owner:HEADWALL PHOTONICS

Hyper-spectral estimation method of total nitrogen content of rice leaves and estimation model constructing method

An embodiment of the invention discloses a hyper-spectral estimation model constructing method of total nitrogen content of rice leaves. The method comprises steps as follows: multiple experimental plots are selected, and multiple sampling points are selected in each experimental plot; canopy spectral measurement is performed at the critical growing stage of rice; multiple sampling spectrums are recorded at each sampling point, and an average value is taken as a spectral measurement value of the sampling point; a hyper-spectral image of each experimental plot is acquired by an airborne imaging spectrometer; multiple function leaves at different parts are collected at each sampling point, and the total nitrogen content of the rice leaves is measured; the hyper-spectral estimation model of the total nitrogen content of the rice leaves is constructed with the adoption of spectral indexes or a partial least-squares regression method. The embodiment of the invention further discloses a hyper-spectral estimation method of the total nitrogen content of the rice leaves. The total nitrogen content of the rice leaves is estimated according to the model constructed with the method. The scientific and technical basis can be provided for space inversion of the nitrogen content of regional-scale rice and efficient implementation of precision agriculture.
Owner:NORTHWEST A & F UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products