Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1553results about "Mass spectrometers" patented technology

Atmospheric pressure ion source for mass spectrometry

A multiple function atmospheric pressure ion source interfaced to a mass spectrometer comprises multiple liquid inlet probes configured such that the sprays from two or more probes intersect in a mixing region. Gas phase sample ions or neutral species generated in the spray of one probe can react with reagent gas ions generated from one or more other probes by such ionization methods as Electrospray, photoionization, corona discharge and glow discharge ionization. Reagent ions may be optimally selected to promote such processes as Atmospheric Pressure Chemical Ionization of neutral sample molecules, or charge reduction or electron transfer dissociation of multiply charged sample ions. Selected neutral reagent species can also be introduced into the mixing region to promote charge reduction of multiply charged sample ions through ion-neutral reactions. Different operating modes can be performed alternately or simultaneously, and can be rapidly turned on and off under manual or software control.
Owner:WHITEHOUSE CRAIG +3

Device for Filtration of Fluids Therethrough and Accompanying Method

A microfluidic device for separating target components from a source fluid includes one or more source channels connected to one or more collection channels by one or more transfer channels. The target components of the source fluid can be magnetic or bound to magnetic particles using a know binding agent. A source fluid containing magnetically bound target components can be pumped through the source channel of the microfluidic device. A magnetic field gradient can be applied to the source fluid in the source channel causing the magnetically bound target components to migrate through the transfer channel into the collection channel. The collection channel can include a collection fluid that is stagnant until a predefined volume of source fluid is processed or a predefined volume of target components accumulate in the collection channel, at which point collection fluid can be pumped into the collection channel to flush the target components out of the collection channel. The target components can be subsequently analyzed for detection and diagnosis.
Owner:CHARLES STARK DRAPER LABORATORY +1

Methods and apparatus for the ion mobility based separation and collection of molecules

This invention describes an apparatus for the separation and collection of components in a sample of interest comprising: an ionization source; an ion mobility separator and an ion collector positioned to receive ions leaving the ion mobility separator. The ion mobility separator having an inlet to supply at least one separating substance which comprises particles which selectively interact with at least one analyte component of interest to certain degree different from the others. The analyte component of interest may be enantiomers, diastereomers, stereoisomers, isomers, etc. The ion collector can be used to conduct analytical, preparative, and semi-preparative separation. In addition, a combined primary electrospray and secondary electrospray ionization source is disclosed to enhance ionization efficiency of interest.
Owner:EXCELLIMS CORP

System and Method for Spectral Analysis

The system and method for spectral analysis uses a set of spectral data. The spectral data is arranged according to a second dimension, such as time, temperature, position, or other condition. The arranged spectral data is used in a signal separation process, such as an independent component analysis (ICA), which generates independent signals. The independent signals are then used for identifying or quantifying a target component.
Owner:SIGMED

Ion source, ion beam processing/observation apparatus, charged particle beam apparatus, and method for observing cross section of sample

An ion beam machining and observation method relevant to a technique of cross sectional observation of an electronic component, through which a sample is machined by using an ion beam and a charged particle beam processor capable of reducing the time it takes to fill up a processed hole with a high degree of flatness at the filled area. The observation device is capable of switching the kind of gas ion beam used for machining a sample with the kind of a gas ion beam used for observing the sample. To implement the switch between the kind of a gas ion beam used for sample machining and the kind of a gas ion beam used for sample observation, at least two gas introduction systems are used, each system having a gas cylinder a gas tube, a gas volume control valve, and a stop valve.
Owner:HITACHI HIGH-TECH CORP

Single and multiple operating mode ion sources with atmospheric pressure chemical ionization

ActiveUS20090294660A1Maximize ion source performanceMinimizing chargeIsotope separationMass spectrometersGas phaseCorona discharge
An Atmospheric Pressure Chemical Ionization (APCI) source interfaced to a mass spectrometer is configured with a corona discharge needle positioned inside the APCI inlet probe assembly. Liquid sample flowing into the APCI inlet probe is nebulized and vaporized prior to passing through the corona discharge region all contained in the APCI inlet probe assembly Ions produced in the corona discharge region are focused toward the APCI probe centerline to maximize ion transmission through the APCI probe exit. External electric fields penetrating into the APCI probe exit end opening providing additional centerline focusing of sample ions exiting the APCI probe. The APCI probe is configured to shield the electric field from the corona discharge region while allowing penetration of an external electric field to focus APCI generated ions into an orifice into vacuum for mass to charge analysis. Ions that exit the APCI probe are directed only by external electric fields and gas flow maximizing ion transmission into a mass to charge analyzer. The new APCI probe can be configured to operate as a stand alone APCI source inlet probe, as a reagent ion gun for ionizing samples introduced on solids or liquid sample probes or through gas inlets in a multiple function ion source or as the APCI portion of a combination Electrospray and APCI multiple function ion source. Sample ions and gas phase reagent ions are generated in the APCI probe from liquid or gas inlet species or mixtures of both.
Owner:PERKINELMER U S LLC

Fragmentation methods for mass spectrometry

Apparatus and methods are provided that enable the interaction of low-energy electrons and positrons with sample ions to facilitate electron capture dissociation (ECD) and positron capture dissociation (PCD), respectively, within multipole ion guide structures. It has recently been discovered that fragmentation of protonated ions of many biomolecules via ECD often proceeds along fragmentation pathways not accessed by other dissociation methods, leading to molecular structure information not otherwise easily obtainable. However, such analyses have been limited to expensive Fourier transform ion cyclotron resonance (FTICR) mass spectrometers; the implementation of ECD within commonly-used multipole ion guide structures is problematic due to the disturbing effects of RF fields within such devices. The apparatus and methods described herein successfully overcome such difficulties, and allow ECD (and PCD) to be performed within multipole ion guides, either alone, or in combination with conventional ion fragmentation methods. Therefore, improved analytical performance and functionality of mass spectrometers that utilize multipole ion guides are provided.
Owner:PERKINELMER U S LLC

Ion source

This invention relates to a desorpton / ionization source operated under ambient conditions for direct analysis of solid or liquid samples on a surface. The source comprises of a laser desorption system and a UV / electrospray combined ionization system. The source is suitable for simultaneously ionizing samples with different polarity in a complex mixture. At the same time, the compact design of the source with multiple channels can maintain the level of local concentration of the analyte ions inside the source for higher efficiency of sample ionization and introduction.
Owner:SHIMADZU RES LAB SHANGHAI

Mass spectrometer system

During the structural analysis of a protein or peptide by tandem mass spectroscopy, a peptide ion derived from a protein that has already been measured and that is expressed in great quantities is avoided as a tandem mass spectroscopy target. A peptide derived from a minute amount of protein, which has heretofore been difficult to analyze, can be automatically determined as a tandem mass spectroscopy target within the real time of measurement. Data concerning a protein that has already been measured and a peptide derived from the protein is automatically stored in an internal database. The stored data is collated with measured data with high accuracy to determine an isotope peak. In this way, the process of selecting a peptide peak that has not been measured as the target for the next tandem analysis can be performed within the real time of measurement and a redundant measurement of peptides derived from the same protein can be avoided. The information contained in the MSn spectrum is effectively utilized in each step of the MSn involving a multi-stage dissociation and mass spectroscopy (MSn), so that the flows for the determination of the next analysis content and the selection of the parent ion for the MSn+1 analysis, for example, can be optimized within the real time of measurement and with high efficiency and accuracy. Thus, a target of concern to the user can be subjected to tandem mass spectroscopy without wasteful measurement.
Owner:HITACHI HIGH-TECH CORP

Utilizing gas flows in mass spectrometers

The invention relates to ions guided by gas flows in mass spectrometers, particularly in RF multipole systems, and to RF quadrupole mass filters and their operation with gas flows in tandem mass spectrometers. The invention provides a tandem mass spectrometer in which the RF quadrupole mass filter is operated at vacuum pressures in the medium vacuum pressure regime, utilizing a gas flow to drive the ions are through the mass filter. Vacuum pressures between 0.5 to 10 pascal are maintained in the mass filter. The mass filter may be enclosed by a narrow enclosure to guide the gas flow. The quadrupole mass filter may be followed by an RF multipole system, operated at the same vacuum pressure, serving as fragmentation cell to fragment the selected parent ions. The fragmentation cell may be enclosed by the same enclosure which already encloses the mass filter, so the ions may be driven by the same gas flow at the same vacuum pressure, greatly simplifying the required vacuum pumping system in tandem mass spectrometers. There are many other applications utilizing gas flows including supersonic gas jets in mass spectrometry.
Owner:BRUKER DALTONIK GMBH & CO KG

Ion Focusing and Detection in a Miniature Linear Ion Trap for Mass Spectrometry

A miniature linear ion trap (MLIT) with a length of less than 30 mm is provided for ion focusing in the axial plane. The MLIT has multipoles for applying an AC voltage to ions and tubular entrance and exit lenses for applying a DC voltage to the ions. In another aspect, MLIT includes electrodes within the tubular entrance and exit lenses for detection of image current. A method is also provided for applying voltage to the entrance and exit lenses for ion focusing.
Owner:STC UNM

Device and method for forming ions

A device and method for forming ions by inductive ionization is disclosed. The device is an ion source that includes a capacitor having a pair of electrodes separated by a dielectric material. The method of the invention uses the capacitor-based ion source to form positive and negative ions including multiply-charged ions.
Owner:UNIV OF WASHINGTON

Method and apparatus for determining gas content of subsurface fluids for oil and gas exploration

A process to analyze fluid entrained in well boreholes. The process includes gathering trap gas samples from return of drilling mud at multiple depths. The process also includes the steps of subjecting the samples to mass spectrometry in order to determine mass to charge ratios data of hydrocarbons and analyzing the mass to charge ratios data in relation to depth or time. Samples from at least one other source may also be gathered and analyzed chosen from the group consisting of mud fluid analysis, cuttings backgrounds analysis and cuttings crush analysis.
Owner:SCHLUMBERGER TECH CORP

Method for the analysis of tissue sections

The present invention relates to a method for the histologic classification of a tissue section. The method includes acquiring a mass spectrometric image and a light-optical image of the same tissue section (the optical image having a higher spatial resolution than the mass spectrometric image) and combining optical information on the structures of a subarea of the tissue section with mass spectrometric information on the subarea (the structures not being spatially resolved in the mass spectrometric image).
Owner:BRUKER DALTONIK GMBH & CO KG

Method for increasing ionization efficiency in mass spectroscopy

A mass spectrometry ionization method in which electrospray droplets or solid sample matrices are exposed to an ion beam thereby increasing the unbalanced charge of the analyte is provided. In another embodiment, a mass spectrometry ionization method in which ionization of the sample is achieved by directing an ion beam at a liquid or solid sample matrix containing analyte thereby ionizing and adding unbalanced charge to the analyte is provided.
Owner:TARGET DISCOVERY

Method and Apparatus for Correlating Precursor and Product Ions in All-Ions Fragmentation Experiments

A method for matching precursor ions to product ions generated in a chromatographymass spectrometry experiment comprises: choosing a time window defining a region of interest for precursor ion data and product ion data generated by the experiment; constructing a plurality of extracted ion chromatograms (XICs) for the precursor ion data and the product ion data within the region of interest; automatically detecting and characterizing chromatogram peaks within each XIC and automatically generating synthetic analytical fit peaks thereof; discarding a subset of the synthetic analytical peaks which do not satisfy noise reduction rules; performing a respective cross-correlation score calculation between each pair of synthetic analytical fit peaks; and recognizing matches between precursor ions and product ions based on the cross correlation scores.
Owner:THERMO FINNIGAN

Mass analysis system with low pressure differential mobility spectrometer

A mass analysis system including a low pressure dissociation region and a differential mobility spectrometer. The differential mobility spectrometer including at least one pair of filter electrodes defining an ion flow path where the filter electrodes generate an electric field for passing through a selected portion of the sample ions based on the mobility characteristics of the sample ions. The differential mobility spectrometer also includes a voltage source that provides DC and RF voltages to at least one of the filter electrodes to generate the electric field, an ion inlet that receives sample ions that have passed through the low pressure dissociation region, and an ion outlet that outputs the selected portion of the sample ions. A mass spectrometer receives some or all of the selected portion of the sample ions.
Owner:MDS ANALYTICAL TECH A BUSINESS UNIT OF MDS +1

Multi-reflecting time-of-flight mass analyser and a time-of-flight mass spectrometer including the mass analyser

ActiveUS20100044558A1Minimizing beam spreadReducing angular spreadIsotope separationMass spectrometersTime-of-flight mass spectrometryFlight direction
A multi-reflecting TOF mass analyser has two parallel, gridless ion mirrors each having an elongated structure in a drift direction (Z). These ion mirrors provide a folded ion path formed by multiple reflections of ions in a flight direction (X), orthogonal to the drift direction (Z). The analyser also has a further gridless ion mirror for reflecting ions in the drift direction (Z). In operation ions are spatially separated according to mass-to-charge ratio due to their different flight times along the folded ion path and ions having substantially the same mass-to-charge ratio are subjected to energy focusing with respect to the flight and drift directions.
Owner:SHIMADZU CORP

Novel tandem mass spectrometer

In a tandem mass spectrometer ions are created only once and stored in an ion reservoir. A particular ion species to be analyzed is then exported from the reservoir through a mass selective ion gate without damaging the other ion species remaining in the reservoir. All subsequent analyses are conducted on these stored ions, without adding further ions so that no changes in the concentrations of the stored ion species occur. The exported ions are fragmented, and a fragment ion mass spectrum is measured in a mass analyzer, preferably in a time-of-flight mass analyzer with orthogonal ion injection. The processes of exporting a selected ion species with subsequent fragmentation and the acquisition of the fragment ion spectrum can be repeated for any number of ion species stored in the reservoir.
Owner:BRUKER DALTONIK GMBH +1

Mass spectrometer with a plurality of ionization probes

A multiple sample mass spectrometer having multiple atmospheric pressure ionization probes, each forming an ion spray with passages associated with each of said ion sprays for introducing sample ions into the mass spectrometer for analysis. The flow of ions through selected passages is selectively blocked whereby to permit analysis of ions from selected ionization probes.
Owner:THERMO FINNIGAN

Vacuumeultraviolet lamp ionization device in time-of-flight mass spectrometer

This invention relates to one fly time mass spectrum vacuum ultraviolet isolation device, which comprises the following parts: one ionization chamber fixed with vacuum ultraviolet lamp as ion source; one ion repel electrode in one to four mm to the lamp window and earth electrode at ten to fifteen mm to the dispel electrode; ion repel electrode and earth connection electrode weak field acceleration ion electron for isolation; light exit hole with diameter as two to 8mm down the electrodes; one capillary to lead vacuum ultraviolet lamp front end with light axis vertical to gas sample in direction.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Apparatus and method for thermal assisted desorption ionization systems

The present invention is directed to a method and device to desorb an analyte using heat to allow desorption of the analyte molecules, where the desorbed analyte molecules are ionized with ambient temperature ionizing species. In various embodiments of the invention a current is passed through a mesh upon which the analyte molecules are present. The current heats the mesh and results in desorption of the analyte molecules which then interact with gas phase metastable neutral molecules or atoms to form analyte ions characteristic of the analyte molecules.
Owner:BRUKER SCI LLC

Ion detection and parameter estimation for n-dimensional data

Methods and apparatus for LC / IMS / MS analysis involve obtaining noisy raw data from a sample, convolving the data with an artifact-reducing filter, and locating, in retention-time, ion mobility, and mass-to-charge-ratio dimensions, one or more ion peaks of the convolved data.
Owner:WATERS TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products