Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1821 results about "Corona discharge" patented technology

A corona discharge is an electrical discharge brought on by the ionization of a fluid such as air surrounding a conductor that is electrically charged. Spontaneous corona discharges occur naturally in high-voltage systems unless care is taken to limit the electric field strength. A corona will occur when the strength of the electric field (potential gradient) around a conductor is high enough to form a conductive region, but not high enough to cause electrical breakdown or arcing to nearby objects. It is often seen as a bluish (or another color) glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same property as a gas discharge lamp.

Method for surface corona/ozone making, devices utilizing the same and methods for corona and ozone applications

A method for making surface corona discharge, which produces ozone gas and apparatus for producing the same are disclosed, in which a dielectric spacer/film having a specific capacity C' equal to or more than 200 nanofarad per square meter positioned between the base electrode and the net electrode. Said net electrode is a wire net or a perforated metal or a wire winding having an open area not less than about 70%, and a size of hole D equals to or less than about 0.7V/P, where V is a voltage in kilovolts and P is pressure of an ambient air or an oxygen in atmospheres. Net electrode has radius R of wire or radius of an edge of openings in the perforated metal equal to or more than about 1.6d, where d is the thickness of the said dielectric spacer/film, which is determined by a fundamental formula d=9k/C', where d is in millimeters, C' is in nF/m2, and k is dimensionless dielectric constant k of given material. Under disclosed parameters said surface corona is safe for human contact if said net electrode is grounded. Start voltage Vst of ozone production is determined by experimental formula Vst=0.7+60/C', kV, here C' in nF/m2. The even and high intensity corona surface and high ozone output takes place if the operating voltage is more than about 3Vst. AC power supply is applied to produce ozone gas at "home" voltage 0.7-1.0 kV and produces ozone gas more effectively at 2,5-3.6 kV. A method for disinfection and decontamination of objects by using the direct corona contact and apparatus for making the same is disclosed, in which safe corona surface is placed on said object and is acting by ozone, ultraviolet and ion bombing simultaneously in the unique environment, which takes place inside of the safe corona. A method for ozone disinfection and decontamination and devices for making the same is disclosed, in which said ozone generating element is placed in a closed container/room with or without treated objects and produce a high ozone concentration due to effective ozone dispersion from corona surface without blowing of air/oxygen through said container/room.
Owner:ANDREEV SERGEY I +1

Single and multiple operating mode ion sources with atmospheric pressure chemical ionization

ActiveUS20090294660A1Maximize ion source performanceMinimizing chargeIsotope separationMass spectrometersGas phaseCorona discharge
An Atmospheric Pressure Chemical Ionization (APCI) source interfaced to a mass spectrometer is configured with a corona discharge needle positioned inside the APCI inlet probe assembly. Liquid sample flowing into the APCI inlet probe is nebulized and vaporized prior to passing through the corona discharge region all contained in the APCI inlet probe assembly Ions produced in the corona discharge region are focused toward the APCI probe centerline to maximize ion transmission through the APCI probe exit. External electric fields penetrating into the APCI probe exit end opening providing additional centerline focusing of sample ions exiting the APCI probe. The APCI probe is configured to shield the electric field from the corona discharge region while allowing penetration of an external electric field to focus APCI generated ions into an orifice into vacuum for mass to charge analysis. Ions that exit the APCI probe are directed only by external electric fields and gas flow maximizing ion transmission into a mass to charge analyzer. The new APCI probe can be configured to operate as a stand alone APCI source inlet probe, as a reagent ion gun for ionizing samples introduced on solids or liquid sample probes or through gas inlets in a multiple function ion source or as the APCI portion of a combination Electrospray and APCI multiple function ion source. Sample ions and gas phase reagent ions are generated in the APCI probe from liquid or gas inlet species or mixtures of both.
Owner:PERKINELMER U S LLC

Measuring device and measuring method for trap parameter of solid dielectric material

The invention discloses a measuring device and method for a trap parameter of solid dielectric. The solid dielectric material is charged by using a three-electrode corona discharge system; a material sample to be tested is placed below a single-needle electrode and a metal mesh electrode; the sample is adhered to a metal disc electrode through conductive silicone grease and is charged by the three-electrode system; after charging is ended, an external voltage is removed, and short circuit discharge is performed to remove surface free loads; surface potential of the measured sample is attenuated; and the trap energy level and the trap density parameter of the material can be calculated through a signal conditioning circuit and a data acquisition system. The measuring device comprises a constant temperature box, the three-electrode coronate charging system, a surface potential measuring system, a sample preheating system, a rotary electrode and a temperature and humidity control system. The invention provides an effective analysis means for research in representation of an aging condition of a polymer insulating material and an aging rule of polymer by the trap parameter and research in aspects such as a solid dielectric surface electrification phenomenon and surface flashover performance influence.
Owner:XI AN JIAOTONG UNIV

Single and multiple operating mode ion sources with atmospheric pressure chemical ionization

An Atmospheric Pressure Chemical Ionization (APCI) source interfaced to a mass spectrometer is configured with a corona discharge needle positioned inside the APCI inlet probe assembly. Liquid sample flowing into the APCI inlet probe is nebulized and vaporized prior to passing through the corona discharge region all contained in the APCI inlet probe assembly Ions produced in the corona discharge region are focused toward the APCI probe centerline to maximize ion transmission through the APCI probe exit. External electric fields penetrating into the APCI probe exit end opening providing additional centerline focusing of sample ions exiting the APCI probe. The APCI probe is configured to shield the electric field from the corona discharge region while allowing penetration of an external electric field to focus APCI generated ions into an orifice into vacuum for mass to charge analysis. Ions that exit the APCI probe are directed only by external electric fields and gas flow maximizing ion transmission into a mass to charge analyzer. The new APCI probe can be configured to operate as a stand alone APCI source inlet probe, as a reagent ion gun for ionizing samples introduced on solids or liquid sample probes or through gas inlets in a multiple function ion source or as the APCI portion of a combination Electrospray and APCI multiple function ion source. Sample ions and gas phase reagent ions are generated in the APCI probe from liquid or gas inlet species or mixtures of both.
Owner:PERKINELMER U S LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products