Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

587 results about "Forward propagation" patented technology

Face recognition method based deep learning and face recognition device thereof and electronic equipment

The invention discloses a face recognition method based deep learning and a face recognition device thereof and electronic equipment. The method comprises the steps that a convolutional neural network model is constructed, and the convolutional neural network model comprises a first convolution unit, a first pooling layer, multiple convolution combinations, a second pooling layer and full connection layers which are connected in turn, wherein the first convolution unit comprises a first convolution layer, a batch normalization layer and an excitation function layer, the excitation function layer simultaneously uses a ReLU function and a NReLU function to act as the excitation function, and the adjacent convolution combinations are connected by the short circuit layer of the residual network; and the convolutional neural network model is trained, the training data are inputted to the convolutional neural network model and training is performed by using the stochastic gradient descent method, and the last full connection layer is removed out of the trained convolutional neural network model and then only forward propagation is performed so as to act as the face feature data required for face recognition. ReLU + NReLU are used as the excitation function so that the computational burden can be reduced, the accuracy can be guaranteed, the model size can be reduced and the operation speed can be enhanced.
Owner:智慧眼科技股份有限公司

Image classification method capable of effectively preventing convolutional neural network from being overfit

The invention relates to an image classification method capable of effectively preventing a convolutional neural network from being overfit. The image classification method comprises the following steps: obtaining an image training set and an image test set; training a convolutional neural network model; and carrying out image classification to the image test set by adopting the trained convolutional neural network model. The step of training the convolutional neural network model comprises the following steps: carrying out pretreatment and sample amplification to image data in the image training set to form a training sample; carrying out forward propagation to the training sample to extract image features; calculating the classification probability of each sample in a Softmax classifier; according to the probability yi, calculating to obtain a training error; successively carrying out forward counterpropagation from the last layer of the convolutional neural network by the training error; and meanwhile, revising a network weight matrix W by SGD (Stochastic Gradient Descent). Compared with the prior art, the invention has the advantages of being high in classification precision, high in rate of convergence and high in calculation efficiency.
Owner:DEEPBLUE TECH (SHANGHAI) CO LTD

Ultrasound imaging

ActiveCN101023376AImprove the contrast-to-noise ratioSuppression of linear scatter signalsUltrasonic/sonic/infrasonic diagnosticsInfrasonic diagnosticsSonificationCalcification
New methods of ultrasound imaging are presented that provide images with reduced reverberation noise and images of nonlinear scattering and propagation parameters of the object, and estimation of corrections for wave front aberrations produced by spatial variations in the ultrasound propagation velocity. The methods are based on processing of the received signal from transmitted dual frequency band ultrasound pulse complexes with overlapping high and low frequency pulses. The high frequency pulse is used for the image reconstruction and the low frequency pulse is used to manipulate the nonlinear scattering and/or propagation properties of the high frequency pulse. A 1st method uses the scattered signal from a single dual band pulse complex for filtering in the fast time (depth time) to provide a signal with suppression of reverberation noise and with 1st harmonic sensitivity and increased spatial resolution. In other methods two or more dual band pulse complexes are transmitted where the frequency and/or the phase and/or the amplitude of the low frequency pulse vary for each transmitted pulse complex. Through filtering in the pulse number coordinate and corrections of nonlinear propagation delays and optionally also amplitudes, a linear back scattering signal with suppressed pulse reverberation noise, a nonlinear back scattering signal, and quantitative nonlinear scattering and forward propagation parameters are extracted. The reverberation suppressed signals are further useful for estimation of corrections of wave front aberrations, and especially useful with broad transmit beams for multiple parallel receive beams. Approximate estimates of aberration corrections are given. The nonlinear signal is useful for imaging of differences in tissue properties, such as micro-calcifications, in-growth of fibrous tissue or foam cells, or micro gas bubbles as found with decompression or injected as ultrasound contrast agent.
Owner:比约恩・A・J・安杰尔森 +2

Deep learning based vehicle license plate position insensitive vehicle license plate recognition method

The invention discloses a deep learning based vehicle license plate position insensitive vehicle license plate recognition method, which is characterized in that a sample set with seven vehicle license plate character labels is built, and training is carried out on a deep convolution neural network. The vehicle license plate recognition method comprises the steps of carrying out preprocessing on a vehicle license plate image to be detected, converting the preprocessed vehicle license plate image into an image whose size is the same as that of a sample in the sample set, and inputting the converted image into the trained deep convolution neutral network; carrying out one time of forward propagation in the deep convolution neural network, and outputting seven labels; and acquiring Chinese characters and characters corresponding to the labels through looking up a table so as to acquire seven vehicle license plate characters. According to the invention, vehicle license plate position information can be effectively recognized through creatively sharing a convolution layer, carrying out recognition on the seven vehicle license plate characters and carrying out sample processing in a targeted manner at the same time, thereby improving the recognition rate under a complex environment, and finally achieving a good global recognition effect.
Owner:CHENGDU XINEDGE TECH

Traffic jam judgment method based on deep learning

The invention discloses a traffic jam judgment method based on deep learning. The traffic jam judgment method comprises the following steps: 1, acquiring a training sample, and adding a tag so as to obtain an image which comprises the tag and corresponds to a monitoring video file; 2, performing forward propagation, namely, transmitting the image which comprises the tag and corresponds to the monitoring video file into a designed convolution neural network model, and performing forward propagation so as to obtain a type tag output by the convolution neural network model; 3, performing back propagation, namely, calculating a loss function value of the type tag output in forward propagation and an actual type tag of the sample, performing back propagation on the loss function value in a minimized error direction so as to adjust a weight matrix of a convolution layer and obtain a final convolution neural network model; 4, judging traffic jam, namely, transmitting at least one frame of image corresponding to a current monitoring video file of a selected road section into the trained final convolution neural network model, and performing forward propagation. By adopting the traffic jam judgment method, the traffic jam grade can be provided according to the traffic situation of a current road, and relatively good applicability and robustness can be achieved.
Owner:CHENGDU TOPPLUSVISION TECH CO LTD

Fourier parallel magnetic resonance imaging method based on one-dimensional part of deep convolutional network

The invention relates to a Fourier parallel magnetic resonance imaging method based on a one-dimensional part of a deep convolutional network, and belongs to the technical field of magnetic resonance imaging. The method comprises the following steps: a sample set for training and a sample label set are created; an initial deep convolutional network is built; a training sample of the sample set is input into an initial deep convolutional network model to perform forward propagation, an output result of the forward propagation is compared with an expect result in the sample label set, and training is performed using a gradient descent algorithm until various layer parameters maximizing the consistency between the output result and the expect result are obtained; an optimal deep convolutional network model is established by utilizing the obtained various layer parameters; and a multi-coil under-sampling image obtained through online sampling is input into the optimal deep convolutional network model, forward propagation is performed on the optimal deep convolutional network model, and a rebuilt single-channel whole-sampling image is output. A noise of the rebuilt image can be removed well, a magnetic resonance image having a good visual effect is rebuilt, and the Fourier parallel magnetic resonance imaging method has high practical value.
Owner:SHENZHEN INST OF ADVANCED TECH

Clothes classifying method based on convolutional neural network

The invention discloses a clothes classifying method based on a convolutional neural network. The method comprises the following steps of acquiring clothes image samples, and dividing the samples into training samples and testing samples; preprocessing the training samples and the testing samples; constructing a convolutional neural network model; performing training of two stages including a forward propagation stage and a backward propagation stage on the convolutional neural network model through preprocessed training samples, finishing the training when the error calculated during the backward propagation stage reaches a desired value, and acquiring a parameter of the convolutional neural network model; testing the preprocessed testing samples by using the trained convolutional neural network model and outputting final clothes classifying results. The convolutional neural network model can make clothes images directly serve as network inputs, extract image features in an implicit way and establish a global feature expression. Compared with a manually designed feature extraction way, the method is more convenient and accurate. The problem that a conventional algorithm leads to low clothes classifying accuracy is solved.
Owner:NANJING UNIV OF INFORMATION SCI & TECH

Method for inverting near-surface velocity model by utilizing preliminary waveforms

The invention discloses a method for inverting a near-surface velocity model by utilizing preliminary waveforms. The method comprises acoustic wave equation-based wave field forward modeling and steepest descent-based waveform inversion technologies, and comprises the following steps of 1, extracting time-domain preliminary waveform records and an initial model; 2, calculating a simulated wave field and a wave field residual by utilizing acoustic wave equation staggered grid finite-difference forward modeling simulation; 3, reversely propagating the wave field residual to obtain a retransmission wave field; 4, calculating a gradient of a target function by utilizing the retransmission wave field and a forward propagation wave field, and calculating an updating step length; 5, updating a speed model; 6, inspecting whether the speed model is consistent with an iteration stopping condition, outputting the speed model if the speed model is consistent with the iteration stopping condition, otherwise returning to the step 2, and continuing iterative updating. According to the method, a wave equation theory-based full-waveform inversion technology is used as reference, and preliminary waves with higher energy and more stable waveforms are used for inversion, so that the multiplicity of solutions of full-waveform inversion is reduced, and the inversion stability and the calculation efficiency are improved; the accuracy of static correction and shallow depth imaging is improved.
Owner:中国石油集团西北地质研究所有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products