Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1294 results about "Pulse number" patented technology

Your pulse, or heart rate, is the number of times your heart beats each minute. When at rest, a normal heart rate ranges between 60 and 100 beats per minute.

Control method of two-wheeled self-balance vehicle

A control method of a two-wheeled self-balance vehicle comprises the steps as follows: (1), performing initialization: (2), reading values of a gyroscope, an accelerometer and a rotation angle sensor as well as the pulse number of an encoder respectively; (3), obtaining a vehicle body inclination, a handlebar turning angle, motor speeds and a vehicle speed; (4), then calculating PWM (pulse width modulation) values of vertical control, direction control and speed control respectively through a PID (proportion integration differentiation) control algorithm; (5), superposing the three PWM values together and outputting the three PWM values to left and right motors; (6), then sending data of the gyroscope, the accelerometer, the vehicle body inclination, a battery voltage, motor currents and the vehicle speed to an upper computer so as to monitor the operating status of the whole vehicle; (7), when the battery voltage is monitored to be smaller than a preset value, and the motor currents or the vehicle speed is monitored to be larger than the preset value through monitoring, turning on corresponding LED warning lights; and (8), when the vehicle body inclination is larger than a preset angle through monitoring when the vehicle body inclination is monitored to be larger than a preset angle, determining that the vehicle body falls down, stopping the operation and returning to an initializer. According to the control method, a more accurate operational method is adopted.
Owner:GUANGZHOU COLLEGE OF SOUTH CHINA UNIV OF TECH

Frequency measurement method based on FPGA

The invention provides a frequency measurement method based on an FPGA. A standard reference clock is adopted to count the number of pulses of a measured signal in a unit time (1s) and the number of the pulses of the measured signal in the unit time (1s) is the frequency of the signal. Due to the fact that the starting moment of a gate and the finishing moment of the gate are random for the signal, a pulse period quantization error can be produced, and measurement accuracy needs to be analyzed further: the pulse period of a signal to be measured is set to be Tx, the frequency is set to be Fx, and when the measuring time T equals to 1s, the measurement accuracy & meets the equation that &=Tx/T=1/Fx. The fact that measurement accuracy in a direct frequency measurement method is relevant to the frequency of the signal is known, the higher the frequency of the signal to be measured is, the higher the measurement accuracy is, and otherwise, the lower the frequency of the signal to be measured is, the lower the measurement accuracy is. The direct frequency measurement method is only suitable for measurement of the signal at the higher frequency and can not meet the demand that the measurement accuracy remains unchanged in the whole measurement frequency band. In order to overcome the defect of inaccuracy in low-frequency-band measurement, gating signals and the measured signal are used for carrying out dual control on enable signals of the counter, and therefore accuracy is improved.
Owner:LANGCHAO ELECTRONIC INFORMATION IND CO LTD

Ultrasound imaging

ActiveCN101023376AImprove the contrast-to-noise ratioSuppression of linear scatter signalsUltrasonic/sonic/infrasonic diagnosticsInfrasonic diagnosticsSonificationCalcification
New methods of ultrasound imaging are presented that provide images with reduced reverberation noise and images of nonlinear scattering and propagation parameters of the object, and estimation of corrections for wave front aberrations produced by spatial variations in the ultrasound propagation velocity. The methods are based on processing of the received signal from transmitted dual frequency band ultrasound pulse complexes with overlapping high and low frequency pulses. The high frequency pulse is used for the image reconstruction and the low frequency pulse is used to manipulate the nonlinear scattering and/or propagation properties of the high frequency pulse. A 1st method uses the scattered signal from a single dual band pulse complex for filtering in the fast time (depth time) to provide a signal with suppression of reverberation noise and with 1st harmonic sensitivity and increased spatial resolution. In other methods two or more dual band pulse complexes are transmitted where the frequency and/or the phase and/or the amplitude of the low frequency pulse vary for each transmitted pulse complex. Through filtering in the pulse number coordinate and corrections of nonlinear propagation delays and optionally also amplitudes, a linear back scattering signal with suppressed pulse reverberation noise, a nonlinear back scattering signal, and quantitative nonlinear scattering and forward propagation parameters are extracted. The reverberation suppressed signals are further useful for estimation of corrections of wave front aberrations, and especially useful with broad transmit beams for multiple parallel receive beams. Approximate estimates of aberration corrections are given. The nonlinear signal is useful for imaging of differences in tissue properties, such as micro-calcifications, in-growth of fibrous tissue or foam cells, or micro gas bubbles as found with decompression or injected as ultrasound contrast agent.
Owner:比约恩・A・J・安杰尔森 +2

Signal processing method and device for frequency-agile radar based on variable repetition frequency technology

The invention provides a signal processing method and device for frequency-agile radar based on a variable repetition frequency technology. The method includes the following steps: designing a frequency point sequence of random hopping according to a random number and the carrier frequency related parameters of radar, and designing a pulse time interval sequence according to the frequency point sequence and the distance range of a target to be detected; emitting a radar pulse signal according to the designed frequency point sequence and the designed pulse time interval sequence, receiving an echo signal of the radar pulse signal, and sampling and preprocessing the echo signal to obtain a baseband echo sampling signal; processing the baseband echo sampling signal by a single pulse to obtaina time-domain echo signal after pulse compression; and coherently accumulating the time-domain echo signal after pulse compression in the two dimensions of frequency point and pulse number, and obtaining the fine resolution distance and Doppler velocity values of the target to be detected through threshold decision. Accurate detection of the distance and velocity of a moving target by coherent frequency-agile radar is realized, and the amount of computation for the processing of coherent frequency-agile signals can be reduced.
Owner:TSINGHUA UNIV

Rail transit train wheel diameter calibrating method

The invention discloses a rail transit train wheel diameter calibrating method. The method comprises the steps that if the rail transit train wheel diameter calibrating conditions are met, the increase amplitude of rail transit train wheel diameter error tolerance values during slipping and idling are obtained correspondingly; the actual running distance of a train of which train wheels slip and the corresponding number of accumulated pulses thereof are obtained; the number of actual running accumulated pulses of the train of which the train wheels idle and the corresponding actual distance of a transponder in pair are obtained; a train wheel diameter value is calculated according to each cycle of the fixed pulse number of a speed sensor and the actual distance of the transponder, if an absolute value of the difference between the train wheel diameter value obtained through calculation of the round and a calibrated train wheel diameter value of the last round is smaller than the wheel diameter error tolerance value, the wheel diameter calibrating succeeds, and otherwise the wheel diameter calibrating fails; if calibrating succeeds, the train wheel diameter value is the arithmetic average of the train wheel diameter value obtained through calculation of the round and the calibrated train wheel diameter value of the last round; and if calibrating fails, the steps are repeated to calibrate the wheel diameter again.
Owner:SHANGHAI FUXIN INTELLIGENT TRANSPORTATION SOLUTIONS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products