Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5027 results about "Chromaticity" patented technology

Chromaticity is an objective specification of the quality of a color regardless of its luminance. Chromaticity consists of two independent parameters, often specified as hue (h) and colorfulness (s), where the latter is alternatively called saturation, chroma, intensity, or excitation purity. This number of parameters follows from trichromacy of vision of most humans, which is assumed by most models in color science.

Lighting device and lighting method

A lighting device comprising first and second groups of solid state light emitters, which emit light having dominant wavelength in ranges of from 430 nm to 480 nm and from 600 nm to 630 nm, respectively, and a first group of lumiphors which emit light having dominant wavelength in the range of from 555 nm to 585 nm. If current is supplied to a power line, a combination of (1) light exiting the lighting device which was emitted by the first group of emitters, and (2) light exiting the lighting device which was emitted by the first group of lumiphors would, in an absence of any additional light, produce a sub-mixture of light having x, y color coordinates within an area on a 1931 CIE Chromaticity Diagram defined by points having coordinates (0.32, 0.40), (0.36, 0.48), (0.43, 0.45), (0.42, 0.42), (0.36, 0.38). Also provided is a method of lighting.
Owner:IDEAL IND LIGHTING LLC

Lighting device and lighting method

A lighting device comprising a first group of solid state light emitters, with peak wavelength from 430 nm to 480 nm, and optionally a second group with dominant wavelength from 600 nm to 630 nm, and a first group of lumiphors which emit light having dominant wavelength from 555 nm to 585 nm. In some embodiments, if current is supplied to a power line, a combination of (1) light exiting the lighting device which was emitted by the first group of emitters, and (2) light exiting the lighting device which was emitted by the first group of lumiphors would, in an absence of any additional light, produce a sub-mixture of light having x, y color coordinates within an area on a 1931 CIE Chromaticity Diagram defined by points having coordinates (0.32, 0.40), (0.36, 0.48), (0.43, 0.45), (0.42, 0.42), (0.36, 0.38). Also provided is a method of lighting.
Owner:IDEAL IND LIGHTING LLC

Digitally controlled luminaire system

The present invention provides a luminaire system capable of generating light of a desired chromaticity and luminous flux output during continuous operation with varying ambient operating temperature. The luminaire system can be further capable of maintaining a desired correlated colour temperature during dimming of the luminaire. The luminaire system comprises one or more arrays of light-emitting elements for generating light with a current driver system coupled thereto for selectively supplying electrical drive current to each of the arrays, wherein the current driver system is responsive to drive signals received from a controller. The luminaire system further comprises an optical sensor system for generating optical signals representative of chromaticity and luminous flux output of the light. A heat sensing system is operatively coupled to the one or more arrays for generating signals representative of the junction temperatures of arrays of light-emitting elements during operation. The luminaire system further comprises a controller that is operatively connected to the current driver system, the optical sensor system and the heat sensing system for receiving the signals generated by each of these systems and is configured to generate one or more drive signals for transmission to the current driver system in response to the optical signals and thermal signals received from the optical system and the heat sensing system, respectively, thereby enabling a desired level of control of the output light.
Owner:SIGNIFY HLDG BV

White light LED device

A light source including a specific LED and phosphor combination capable of emitting white light for direct illumination. In one embodiment, the light source includes an LED chip emitting in the 460-470 nm range radiationally coupled to a phosphor comprising Ca8Mg(SiO4)4Cl2:Eu2+,Mn2+. In a second embodiment, the light source includes an LED chip emitting at about 430 nm and a phosphor comprising a blend of Sr4Al14O25:Eu2+ (SAE) and a second phosphor having the formula(Tb1-x-yAxREy)3DzO12, where A is a member selected from the group consisting of Y, La, Gd, and Sm; RE is a member selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu; D is a member selected from the group consisting of Al, Ga, and In; x is in the range from 0 to about 0.5, y is in the range from about 0 to about 0.2, and z is in the range from about 4 to about 5. Both embodiments produce light having the coordinates x=0.240-0.260 and y=0.340-0.360 on the CIE chromaticity diagram.
Owner:GELCORE LLC (US) +1

Lighting device and lighting method

A lighting device comprising first and second groups of solid state light emitters, which emit light having wavelength in ranges of from 430 nm to 480 nm and from 600 nm to 630 nm, respectively, and a first group of lumiphors which emit light having dominant wavelength in the range of from 555 nm to 585 nm. If current is supplied to a power line, a combination of (1) light exiting the lighting device which was emitted by the first group of emitters, and (2) light exiting the lighting device which was emitted by the first group of lumiphors would, in an absence of any additional light, produce a sub-mixture of light having x, y color coordinates within an area on a 1931 CIE Chromaticity Diagram defined by points having coordinates (0.32, 0.40), (0.36, 0.48), (0.43, 0.45), (0.42, 0.42), (0.36, 0.38). Also provided is a method of lighting.
Owner:IDEAL IND LIGHTING LLC

Color invariant image fusion of visible and thermal infrared video

A methodology for forming a composite color image fusion from a set of N gray level images takes advantage of the natural decomposition of color spaces into 2-D chromaticity planes and 1-D intensity. This is applied to the color fusion of thermal infrared and reflective domain (e.g., visible) images whereby chromaticity representation of this fusion is invariant to changes in reflective illumination.
Owner:EQUINOX CORP

Digitally controlled luminaire system

The present invention provides a luminaire system capable of generating light of a desired chromaticity and luminous flux output during continuous operation with varying ambient operating temperature. The luminaire system can be further capable of maintaining a desired correlated colour temperature during dimming of the luminaire. The luminaire system comprises one or more arrays of light-emitting elements for generating light with a current driver system coupled thereto for selectively supplying electrical drive current to each of the arrays, wherein the current driver system is responsive to drive signals received from a controller. The luminaire system further comprises an optical sensor system for generating optical signals representative of chromaticity and luminous flux output of the light. A heat sensing system is operatively coupled to the one or more arrays for generating signals representative of the junction temperatures of arrays of light-emitting elements during operation. The luminaire system further comprises a controller that is operatively connected to the current driver system, the optical sensor system and the heat sensing system for receiving the signals generated by each of these systems and is configured to generate one or more drive signals for transmission to the current driver system in response to the optical signals and thermal signals received from the optical system and the heat sensing system, respectively, thereby enabling a desired level of control of the output light.
Owner:SIGNIFY HLDG BV

White and colored organic electroluminescent devices using single emitting material by novel color change technique

An organic electroluminescent device such as a light-emitting diode is disclosed, in which the emission layer comprises a single emitting material at different aggregate state to obtain constant chromaticity white emission. Correspondingly, a novel configuration has been developed to get white emission and color change in the organic EL devices.
Owner:HANGER SOLUTIONS LLC

Light-Emitting Element and Lighting Device

To provide a light-emitting element whose power efficiency is improved and which emits light of natural color like light bulb color. In the light-emitting element, at least three light-emitting units are stacked. The emission spectrum of the light-emitting element has two peaks. One of the two peaks is obtained by combining spectra of light emitted from two light-emitting units. The peak is in the yellow to orange wavelength range and has a wavelength greater than or equal to 560 nm and less than 580 nm. Thus, a wavelength range of high luminosity can be used and the power efficiency can be improved. The color of light emitted from the light-emitting element is close to a blackbody locus in a chromaticity diagram, and light of natural color like light bulb color can be achieved.
Owner:SEMICON ENERGY LAB CO LTD

Sign and method for lighting

A sign comprising a surface having a display, and a plurality of sources of visible light. The sources of visible light are oriented to illuminate at least a portion of the display, and include solid state light emitters and / or luminescent materials. Line segments drawn on a Chromaticity Diagram connecting coordinates of some of the illumination color hues define a shape which encompasses coordinates of the display color hue(s). Also, a sign comprising a surface having a display having a surface area of at least 4 square meters, and at least 100 sources of visible light including solid state light emitters and / or luminescent materials. Also, a sign comprising a white light source and at least one additional source of light. Also, methods of illuminating signs.
Owner:IDEAL IND LIGHTING LLC

Lighting device and lighting method

A lighting device comprising sources of visible light comprising solid state light emitters and / or luminescent materials emitting three or four different hues. A first group of the sources, when illuminated, emit light of two hues which, if combined, would produce illumination having coordinates within an area on a 1931 CIE Chromaticity Diagram defined by points having coordinates: 0.59, 0.24; 0.40, 0.50; 0.24, 0.53; 0.17, 0.25; and 0.30, 0.12. A second group of the sources is of an additional hue. Mixing light from the first and second groups produces illumination within ten MacAdam ellipses of the blackbody locus. Also, a lighting device comprising a white light source having a CRI of 75 or less and at least one solid state light emitters and / or luminescent material. Also, methods of lighting.
Owner:IDEAL IND LIGHTING LLC

White light emitting device and white light source module using the same

A white light emitting device including: a blue light emitting diode chip having a dominant wavelength of 443 to 455 nm; a red phosphor disposed around the blue light emitting diode chip, the red phosphor excited by the blue light emitting diode chip to emit red light; and a green phosphor disposed around the blue light emitting diode chip, the green phosphor excited by the blue light emitting diode chip to emit green light, wherein the red light emitted from the red phosphor has a color coordinate falling within a space defined by four coordinate points (0.5448, 0.4544), (0.7079, 0.2920), (0.6427, 0.2905) and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram, and the green light emitted from the green phosphor has a color coordinate falling within a space defined by four coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) based on the CIE 1931 color chromaticity diagram.
Owner:SAMSUNG ELECTRONICS CO LTD

Lighting device and lighting method

There is provided a lighting device that comprises at least one 600-630 nm solid state light emitter and at least one light source emitting light within an area on a 1931 CIE Chromaticity Diagram defined by a first set of points having x, y coordinates of (0.32, 0.40), (0.36, 0.48), (0.43, 0.45), (0.42, 0.42), (0.36, 0.38), or a second set of points having x, y coordinates of (0.29, 0.36), (0.32, 0.35), (0.41, 0.43), (0.44, 0.49), (0.38, 0.53). Some embodiments further comprise at least a first power line. Also provided are methods that comprise illuminating at least one light source to emit light within one of the areas defined above, and illuminating at least one 600-630 nm emitter.
Owner:IDEAL IND LIGHTING LLC

Method and system for feedback and control of a luminaire

The present invention comprises a method and system for controlling the chromaticity and luminous flux output of a digitally controlled luminaire. The luminaire comprises one or more light-emitting elements and one or more light sensors which can provide optical feedback, wherein this optical feedback is filtered to remove undesired frequencies. The method and system comprises a control system which can sample the filtered signals from the light sensors according to a predetermined feedback sampling frequency scheme, wherein this scheme is specifically configured to provide sufficient iterations of the feedback loop to be performed for adjustment of the chromaticity and luminous flux output of the light-emitting elements, without perceptible visual flicker or momentary chromaticity shifts.
Owner:SIGNIFY HLDG BV

Method and system for automatically calibrating a color display

A system for calibrating a display device to improve its perceived image quality includes a calibration module that is configured to determine, for each of a plurality of white colors associated with a plurality of gray levels displayed sequentially by the display device, a measured chromaticity point on a chromaticity diagram and a measured luminance level. The calibration module calculates, for each gray level, a differential change in each primary color component that simultaneously moves the measured chromaticity point to a target chromaticity point and adjusts the measured luminance level to a target luminance level on a predetermined luminance curve having a target gamma value, and calculates correction values for each primary color component and each gray level based on the calculated differential changes. The system also includes means for outputting the calculated correction values to the display device. The display device corrects the primary color components of a color video signal based on the calculated correction values such that the display device accurately reproduces luminance and color properties of the color video signal.
Owner:CORONA

Multivision system, color calibration method and display

A multi-vision system includes chromaticity sensors for performing colorimetry of a plurality of display units. From colorimetry results obtained from the chromaticity sensors, a color conversion coefficient calculation unit inside a color calibration unit calculates the color conversion coefficient that is characteristic of each display unit. Calculated color conversion coefficients are stored in a color processing unit. The color calibration for this multi-vision system displays representing colors without a color conversion, and from colorimetry results of the representing colors for all the display units, a target color is decided automatically. For all display units, the color conversion coefficients are automatically calculated so that the representing colors are able to be displayed as a target color.
Owner:MITSUBISHI ELECTRIC CORP

Thermal control interface coatings and pigments

The invention provides an optical structure with low chroma and brightness in the visible region and low emissivity in the infrared region. The optical structure includes an interference structure having an infrared reflective layer and an infrared absorbing thin film layer. These layers are in turn separated by a thin film spacer of a dielectric or semiconductor material. The reflectivity and transmission of the layers are selectively controlled through the thickness of the layers such that the visual reflectivity and color is independent of the infrared properties of the absorber and reflector layers.
Owner:JDS UNIPHASE CORP +1

Surface light source device and adjusting method of chromaticity thereof

In this surface light source device, light is incident from a plurality of point light sources 2 arranged on a one side end surface of a light guide plate 1, is reflected on a light reflecting surface 11 on a rear surface of the light guide plate 1, and is emitted from a front surface of the light guide plate 1. The point light sources 2 comprise white light emitting diode elements. Two white light emitting diode elements out of six of the white light emitting diode elements having chromaticity outermost from a center of an aimed chromaticity range in opposite hue directions are arranged in an approximately center of a group of the white diode elements.
Owner:CALLAHAN CELLULAR L L C

White color organic electroluminescence device

The present invention provides a white color organic electroluminescence device including: a cathode; an anode; and one or more organic thin film layers including at least a light emitting layer, the one or more organic thin film layers being sandwiched between the cathode and the anode, in which the light emitting layer is constituted of a laminate of a bluish color light emitting layer and a yellow-to-reddish color light emitting layer, and the light emitting layer contains an asymmetric compound containing a condensed ring. This white color organic EL device realizes reduced chromaticity changes, excels in efficiency of light emission and thermal stability, and ensures strikingly prolonged lifetime.
Owner:IDEMITSU KOSAN CO LTD

Inage predicting encoding method in frame

This invention discloses an intraframe image predicted coding method, which contains intraframe brightness predicted coding and chromaticity coding, obtaining a chromaticity predicted mode according to brightness predicted coding in chromaticity predicted coding. Said invention has advantages of effectively reducing complexity of intraframe coding of chromatic component without using distortion rate optimization method to select prediction mode, raising the efficiency to predict chromaticity block pixel value.
Owner:深圳市迪威迅股份有限公司

Control system for an illumination device incorporating discrete light sources

The present invention provides an illumination system enabling dynamic color control of the illumination produced by the system. The illumination system comprises light-emitting elements for producing illumination, and at least one detecting device which collects information relating to the illumination, which is inherently non-linear. The illumination system also integrates a computing system which receives the information from the at least one detecting device and linearises this information using a multivariate function having a solution defining a hyperplane representing constant chromaticity for a given luminous intensity, and then determines a number of control parameters based on the information. The illumination system also integrates a controller for receiving the control parameters from the computing system and determining the control signals to be sent to the light-emitting elements in order to dynamically alter the characteristics of the illumination based on the collected information and the desired illumination result.
Owner:SIGNIFY HLDG BV

White light emitting apparatus and line illuminator using the same in image reading apparatus

A white light emitting apparatus includes a light source section in which a first white LED that emits white light whose chromaticity deviates to a blue side from a predetermined white region of a CIE chromaticity diagram and a second white LED that emits white light whose chromaticity deviates to a yellow side from the predetermined white region are adjacently disposed so as to emit light with optical axes in substantially the same direction, and a current regulator that independently drives the blue LED chip in the first and second white LEDs, respectively. A color mixture of lights emitted from the first and second white LEDs is adjusted to a chromaticity of the predetermined white region using the current regulator.
Owner:CANON COMPONENTS INC

Two-phase yellow phosphor with self-adjusting emission wavelength

Disclosed herein are “smart” phosphor compositions capable of regulating the chromaticity of their emission to substantially constant values even with variations in the excitation radiation they receive to induce photoluminescence. One phosphor of the smart composition demonstrates an increase in emission intensity increases as the wavelength of the excitation radiation is increased. The other phosphor shows a decrease in emission intensity with increasing excitation wavelength. Constant chromaticity in this context is defined as a change in CIE x or y coordinate of less than about five percent over a 10 nm range of excitation wavelengths.
Owner:INTEMATIX

White light emitting device and light source module for liquid crystal display backlight using the same

A white light emitting device including: a blue LE chip having a dominant wavelength of 430 to 455 nm; a red phosphor disposed around the blue light emitting diode chip, the red phosphor excited by the blue light emitting diode chip to emit red light; and a green phosphor disposed around the blue light emitting diode chip, the green phosphor excited by the blue LED chip to emit green light, wherein the red light emitted from the red phosphor has a color coordinate falling within a space defined by four coordinate points (0.5448, 0.4544), (0.7079, 0.2920), (0.6427, 0.2905) and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram, the green light emitted from the green phosphor has a color coordinate falling within a space defined by four coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) based on the CIE 1931 color chromaticity diagram, and the red phosphor includes a phosphor represented by (Sr, Ba, Ca)AlSiN3:Eu and the green phosphor includes a phosphor represented by (Sr, Ba, Ca)2SiO4:Eu.
Owner:SAMSUNG ELECTRONICS CO LTD

Backlight device, method of driving backlight and liquid crystal display apparatus

The present invention prevents extension of the time period from powering on a device to convergence of chromaticity of emitted white light on a certain chromaticity, irrespective of the temperature when the device is powered on. A color liquid crystal display apparatus includes a liquid crystal display unit, a backlight employing LEDs of red, green and blue as its light source, a drive unit for driving the LEDs of each color, a temperature sensor for sensing the temperature of the LEDs, and a chromaticity sensor for sensing the chromaticity of white light emitted from the LEDs. The drive unit supplies a current to the LEDs to drive them, and implements feedback control of the amount of current for the LEDs of each color based on a value sensed by the chromaticity sensor so that the white light has a certain chromaticity. Furthermore, upon powering on the backlight, the drive unit retrieves initial current values of the LEDs of each color from a non-volatile memory, and corrects the initial current values according to a value sensed by the temperature sensor to activate the LEDs of each color with the corrected value.
Owner:SONY CORP

Method and apparatus for modifying a portion of an image frame in accordance with colorimetric parameters

A method for modifying at least one calorimetric attribute of a predetermined region (22,24) of a motion picture frame (20) in which metadata associated with the motion picture frame (20) is provided, the metadata defining the predetermined region (22,24) of the frame (20). A colorimetric transform is applied to pixels within the predetermined region (22,24), modifying the at least one colorimetric attribute thereby.
Owner:EASTMAN KODAK CO

Tonescales for geographically localized digital rendition of people

In a method and system for processing a photographic image having lightness values, L*, representing one of the colorimetric values of an original scene, the photographic image is transformed. The transformed image has a gamma as a function of CIE 1976 L*, which includes a dark region having a rising slope, a light region having a falling slope, and a plateau region having a slope constantly within 5 percent of a maximum value in said plateau region. The rising slope is at least twice as large as the absolute value of the falling slope. The plateau region is between 10 L* and 30 L* wide. Gamma is a derivative of visually perceived reproduced CIE 1976 L* versus scene CIE 1976 L*. Gamma has a maximum slope between 1.5 and 2.0.
Owner:MONUMENT PEAK VENTURES LLC

Semiconductor light emitting apparatus

A light emitting apparatus with a combination of a plurality of LED chips and a phosphor layer is provided and can be configured to significantly reduce variations in chromaticity and luminance. The plurality of semiconductor light emitting devices (LED chips) are disposed with a gap therebetween, and the phosphor layer is formed on the upper surface thereof to bridge over the gaps between the LED chips. The phosphor layer may be uniform in thickness, but can be less in thickness over the gaps between the LED chips than on the upper surface of the LED chips. The phosphor layer can be continuously formed on the upper surface of the array of the chips with no phosphor layer present in between the chips. This configuration allows for reducing variations in luminance and chromaticity which may result from the gaps or the phosphor layer present in between the gaps.
Owner:STANLEY ELECTRIC CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products