Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1395 results about "Color coordinates" patented technology

Color coordinate(Noun) Each value in a set of coordinates representing the position of a color in a color space.

Lighting device and lighting method

A lighting device comprising first and second groups of solid state light emitters, which emit light having dominant wavelength in ranges of from 430 nm to 480 nm and from 600 nm to 630 nm, respectively, and a first group of lumiphors which emit light having dominant wavelength in the range of from 555 nm to 585 nm. If current is supplied to a power line, a combination of (1) light exiting the lighting device which was emitted by the first group of emitters, and (2) light exiting the lighting device which was emitted by the first group of lumiphors would, in an absence of any additional light, produce a sub-mixture of light having x, y color coordinates within an area on a 1931 CIE Chromaticity Diagram defined by points having coordinates (0.32, 0.40), (0.36, 0.48), (0.43, 0.45), (0.42, 0.42), (0.36, 0.38). Also provided is a method of lighting.
Owner:IDEAL IND LIGHTING LLC

Lighting device and lighting method

A lighting device comprising at least one solid state light emitter and at least one lumiphor. If each solid state light emitter is illuminated and each lumiphor is excited, a mixture of light emitted has x, y color coordinates within an area defined by the coordinates 0.32, 0.40; 0.36, 0,48; 0.43, 0.45; 0.42, 0.42; and 0.36, 0.38. The lumiphor(s) comprises phosphor particles, in the range of from 3 to 7 micrometers (or 5-15, 10-20, or 15-25 micrometers), or having a mean particle size of 5, 10, 15, 20 micrometers. Also, a lighting device comprising at least one emitter and at least one lumiphor in which the lumiphor comprises phosphor particles having sizes as mentioned above, where the lighting device has an efficacy of at least 60 (or 70, or 80) lumens per watt.
Owner:IDEAL IND LIGHTING LLC

Lighting device and lighting method

A lighting device comprising a first group of solid state light emitters, with peak wavelength from 430 nm to 480 nm, and optionally a second group with dominant wavelength from 600 nm to 630 nm, and a first group of lumiphors which emit light having dominant wavelength from 555 nm to 585 nm. In some embodiments, if current is supplied to a power line, a combination of (1) light exiting the lighting device which was emitted by the first group of emitters, and (2) light exiting the lighting device which was emitted by the first group of lumiphors would, in an absence of any additional light, produce a sub-mixture of light having x, y color coordinates within an area on a 1931 CIE Chromaticity Diagram defined by points having coordinates (0.32, 0.40), (0.36, 0.48), (0.43, 0.45), (0.42, 0.42), (0.36, 0.38). Also provided is a method of lighting.
Owner:IDEAL IND LIGHTING LLC

White light emitting device comprising a plurality of light emitting diodes with different peak emission wavelengths and a wavelength converter

Disclosed herein is a light emitting device including one or more light emitting diodes to primarily emit light having different wavelengths in the wavelength range of ultraviolet rays and / or blue light, and a wavelength-conversion means to convert the primary light into secondary light in the visible light wavelength range. The light emitting device of the current invention has a high color temperature of 2000 to 8000 K or 10000 K and a high color rendering index of 90 or more, thus easily realizing desired emission on the color coordinate system. Therefore, the lighting emitting device is applicable to mobile phones, notebook computers, and keypads or backlight units for various electronic products, and, in particular, automobiles and exterior and interior lighting fixtures.
Owner:SEOUL SEMICONDUCTOR

Fast calibration of displays using spectral-based colorimetrically calibrated multicolor camera

Described are a system and method to calibrate displays using a spectral-based colorimetrically calibrated multicolor camera. Particularly, discussed are systems and methods for displaying a multicolor calibration pattern image on a display unit, capturing the multicolor calibration pattern image with a multicolor camera having a plurality of image sensors, with each image sensor configured to capture a predetermined color of light, comparing a set of reference absolute XYZ coordinates of a set of colors from the multicolor calibration pattern with a set of measured XYZ color coordinates captured using the colorimetrically calibrated camera, and calibrating the display unit based on the comparison between the reference coordinates and the measured coordinates.
Owner:QUALCOMM INC

White LEDs with tunable CRI

A method for the manufacturing of white LEDs is proposed, which can achieve a tunable color rendering index (CRI) or luminosity through the use of at least two phosphor composition layers of essentially the same emission color coordinates, each composition including at least one individual phosphor compound. The method allows to optimize the devices for CRI at a given minimal luminosity requirement, or vice versa.
Owner:SAVANT TECH LLC

Lighting device and lighting method

A lighting device comprising first, second and third groups of solid state light emitters, and first and second groups of lumiphors. A mixture of light emitted from the first group of emitters and the first group of lumiphors has x,y color coordinates within an area defined by coordinates (0.36,0.48), (0.43,0.45), (0.5125,0.4866), and (0.4087,0.5896) (or (0.41,0.455), (0.36,0.48), (0.4087,0.5896), and (0.4788,0.5202)). A mixture of light emitted from the second group of emitters and the second group of lumiphors is within an area defined by (0.32,0.40), (0.36,0.38), (0.30,0.26), and (0.25,0.29). A mixture of light from the first and second groups of emitters and the first and second groups of lumiphors is within an area defined by (0.32,0.40), (0.36,0.48), (0.43,0.45), (0.42,0.42), and (0.36,0.38) (or (0.32,0.40), (0.36,0.38), (0.41,0.455), and (0.36,0.48)). A mixture of light from all of these emitters and lumiphors is within ten MacAdam ellipses of the blackbody locus. Also, methods of lighting.
Owner:IDEAL IND LIGHTING LLC

Systems and methods for combining virtual and real-time physical environments

Systems, methods and structures for combining virtual reality and real-time environment by combining captured real-time video data and real-time 3D environment renderings to create a fused, that is, combined environment, including capturing video imagery in RGB or HSV / HSV color coordinate systems and processing it to determine which areas should be made transparent, or have other color modifications made, based on sensed cultural features, electromagnetic spectrum values, and / or sensor line-of-sight, wherein the sensed features can also include electromagnetic radiation characteristics such as color, infra-red, ultra-violet light values, cultural features can include patterns of these characteristics, such as object recognition using edge detection, and whereby the processed image is then overlaid on, and fused into a 3D environment to combine the two data sources into a single scene to thereby create an effect whereby a user can look through predesignated areas or “windows” in the video image to see into a 3D simulated world, and / or see other enhanced or reprocessed features of the captured image.
Owner:BACHELDER EDWARD N +1

Light-emitting device, white light-emitting device, illuminator, and image display

To achieve a light-emitting device emitting light with high brightness, closer to natural light, and less color shift due to a small change in intensity of emitted light, in a light-emitting device including a light source emitting light by driving current and at least one wavelength-converting material absorbing at least part of the light from the light source and emitting light having a different wavelength, the color coordinate x1(17.5) and the color coordinate y1(17.5) of the light emitted at a driving current density of 17.5 A / cm2 and the color coordinate x1(70) and the color coordinate y1(70) of the light emitted at a driving current density of 70 A / cm2 satisfy the following Expressions (D) and (E):−0.006≦x1(17.5)−x1(70)≦0.006  (D),−0.006≦y1(70)−y1(70)≦0.006  (E).
Owner:MITSUBISHI CHEM CORP

White light emitting device and white light source module using the same

A white light emitting device including: a blue light emitting diode chip having a dominant wavelength of 443 to 455 nm; a red phosphor disposed around the blue light emitting diode chip, the red phosphor excited by the blue light emitting diode chip to emit red light; and a green phosphor disposed around the blue light emitting diode chip, the green phosphor excited by the blue light emitting diode chip to emit green light, wherein the red light emitted from the red phosphor has a color coordinate falling within a space defined by four coordinate points (0.5448, 0.4544), (0.7079, 0.2920), (0.6427, 0.2905) and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram, and the green light emitted from the green phosphor has a color coordinate falling within a space defined by four coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) based on the CIE 1931 color chromaticity diagram.
Owner:SAMSUNG ELECTRONICS CO LTD

White LEDs with tailorable color temperature

A method for the manufacturing of white LEDs is proposed, which can achieve a tunable CCT through the use of at least two phosphor materials, each composition including at least one individual phosphor compound. The method allows optimization of the devices for any desired CCT and approximation of the color coordinates of the black body (Planckian) locus.
Owner:GELCORE LLC (US)

White light emitting device and light source module for liquid crystal display backlight using the same

A white light emitting device including: a blue LE chip having a dominant wavelength of 430 to 455 nm; a red phosphor disposed around the blue light emitting diode chip, the red phosphor excited by the blue light emitting diode chip to emit red light; and a green phosphor disposed around the blue light emitting diode chip, the green phosphor excited by the blue LED chip to emit green light, wherein the red light emitted from the red phosphor has a color coordinate falling within a space defined by four coordinate points (0.5448, 0.4544), (0.7079, 0.2920), (0.6427, 0.2905) and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram, the green light emitted from the green phosphor has a color coordinate falling within a space defined by four coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) based on the CIE 1931 color chromaticity diagram, and the red phosphor includes a phosphor represented by (Sr, Ba, Ca)AlSiN3:Eu and the green phosphor includes a phosphor represented by (Sr, Ba, Ca)2SiO4:Eu.
Owner:SAMSUNG ELECTRONICS CO LTD

White light emitting diode module

A white LED module includes a circuit board, a blue LED chip disposed on the circuit board, a green light source of an LED chip or phosphor disposed on the circuit board, and a red light source of an LED chip or phosphor disposed on the circuit board. At least one of the green and red light sources is a phosphor, which is excited by the blue LED chip to radiate. The blue LED chip emits light in a triangular region defined by color coordinates (0.0123, 0.5346), (0.0676, 0.4633) and (0.17319, 0.0048), the green light source emits light in a triangular region defined by color coordinates (0.025, 0.5203), (0.4479, 0.541) and (0.0722, 0.7894), and the red light source emits light in a triangular region defined by color coordinates (0.556, 0.4408), (0.6253, 0.3741) and (0.7346, 0.2654).
Owner:SAMSUNG ELECTRONICS CO LTD

Red and yellow phosphor-converted LEDs for signal applications

There is provided yellow and red illumination systems, including a semiconductor light emitter, and a luminescent material. The systems have an emission falling within the respective ITE red and yellow color bins having specified color coordinates on the CIE chromaticity diagram. The luminescent material may include one or more phosphors. The illumination systems may be used as the red and yellow lights of a traffic light or an automotive display.
Owner:GELCORE LLC (US)

Four color liquid crystal display and panel therefor

A liquid crystal display is provided, which includes a liquid crystal panel assembly including a plurality of red, green, blue and white pixel areas, and a backlight unit placed at a side of the liquid crystal panel assembly. The light emitted from the backlight unit has a color coordinate (x, y) where x ranges from about 0.31 to about 0.34, and y ranges from about 0.32 to about 0.35.
Owner:SAMSUNG DISPLAY CO LTD

Light source module, display panel, display apparatus and methods for manufacturing the same

A pixel of a light emitting diode module, display panel or other device, may comprise different colored sub-pixels, where one of the sub-pixels comprises a wavelength converting material, such as phosphor, to convert light emitted from an associated light emitting diode of that sub-pixel into a color other than the main color of light emitted from that sub-pixel. The wavelength converting material may have an amount selected to tune the color coordinates of the pixel. The amount of wavelength converting material may be determined in response to measuring the intensity of the spectrum of light emitted by the light emitting diode of the sub-pixel, or similarly manufactured sub-pixels, on which the wavelength converting material is to be formed. Methods of manufacturing the same are also disclosed.
Owner:SAMSUNG ELECTRONICS CO LTD

Light emitting device package using quantum dot, illumination apparatus and display apparatus

There is provided a light emitting device package using a quantum dot, an illumination apparatus and a display apparatus. The light emitting device package includes a light emitting device; a sealing part disposed in a path of light emitted from the light emitting device and having a lens shape; and a wavelength conversion part sealed within the sealing part and including a quantum dot. The light emitting device package uses the quantum dot as the wavelength conversion part to thereby achieve superior color reproducibility and light emission efficiency, and facilitates the control of color coordinates by adjusting the particle size and concentration of the quantum dot.
Owner:SAMSUNG ELECTRONICS CO LTD

Phosphor blends for green traffic signals

There is provided a blue-green illumination system, including a semiconductor light emitter, and a luminescent material, wherein the system has an emission with CIE color coordinates located within an area of a of a pentagon on a CIE chromaticity diagram, whose corners have the following CIE color coordinates: i) x=0.0137 and y=0.4831; ii) x=0.2240 and y=0.3890; iii) x=0.2800 and y=0.4500; iv) x=0.2879 and y=0.5196; and v) x=0.0108 and y=0.7220. The luminescent material includes two or more phosphors. The illumination system may be used as the green light of a traffic light or an automotive display.
Owner:GE LIGHTING SOLUTIONS LLC

White and color photoexcitation light emitting sheet and method for the fabrication thereof

The present invention relates to a white and color photoexcitation light emitting sheet comprising a substrate, a light source formed on the substrate, and a white and color photoexcitation light emitting layer capable of converting a light emitted from the light source into a light having a different wavelength, where the white and color photoexcitation light emitting layer is fabricated by mixing a matrix polymer, white and color photoexcitation light emitting materials and a solvent, spinning the resulting mixture to prepare an ultrafine composite fiber layer of the matrix polymer / photoexcitation light emitting materials, and thermocompressing the ultrafine composite fiber layer; and a method for fabrication thereof. The white and color photoexcitation light emitting sheet according to the present invention has uniform brightness and color coordinates and exhibits high color reproducibility.
Owner:KOREA INST OF SCI & TECH

Chromatic architecture for sports equipment

Sporting items such as soccer balls include a casing region and a graphic region that are defined by enhanced-visibility colors (EVCs) that are substantially complementary. Such EVCs can be selected to avoid colors associated with color confusion in color deficient individuals. In addition, such colors can be selected based on total reflectances to obtain a predetermined luminance contrast. EVCs can be selected based on separations of color coordinate locations using CIE chromaticity coordinates or CIE L-a-b coordinates or otherwise selected. Color selection can include consideration of anticipated viewing backgrounds in a general setting, or colors can be customized for a particular location and particular illumination conditions.
Owner:NIKE INTERNATIONAL LTD

LED assembly with a communication protocol for LED light engines

A system including LED assemblies, which system can efficiently and consistently provide a desired color output. The system includes a network and a plurality of light emitting diode (LED) assemblies connected to the network. Each LED assembly includes a unique address. Further, a control unit is connected to the network and is configured to send light control signals to the LED assemblies individually. The light control signals include color information in a universal color coordinate system. The universal color coordinate system can be the CIE color coordinate system and the network can utilize an Ethernet communication protocol.
Owner:DIALIGHT CORP

LCD device and filtering color picec array board

This liquid crystal display includes a liquid crystal display panel having a pixels, a green pixels, a blue pixels and white pixels; and a back light unit disposed in one side of the panel. Light emitted from the back light unit 350 has x-color coordinates ranging from 0.31 to 0.34, and y-color coordinates from 0.32 to 0.35.
Owner:SAMSUNG DISPLAY CO LTD

Systems and methods for combining virtual and real-time physical environments

Systems, methods and structures for combining virtual reality and real-time environment by combining captured real-time video data and real-time 3D environment renderings to create a fused, that is, combined environment, including capturing video imagery in RGB or HSV / HSV color coordinate systems and processing it to determine which areas should be made transparent, or have other color modifications made, based on sensed cultural features, electromagnetic spectrum values, and / or sensor line-of-sight, wherein the sensed features can also include electromagnetic radiation characteristics such as color, infra-red, ultra-violet light values, cultural features can include patterns of these characteristics, such as object recognition using edge detection, and whereby the processed image is then overlaid on, and fused into a 3D environment to combine the two data sources into a single scene to thereby create an effect whereby a user can look through predesignated areas or “windows” in the video image to see into a 3D simulated world, and / or see other enhanced or reprocessed features of the captured image.
Owner:SUBARU TECNICA INTERNATIONAL

Characterization of color imaging systems

Characterizing a color imaging system involves generating color values representing colors of output samples of the color imaging system. The color values are converted into a device-independent color coordinate system using an adjustable white reference vector and a black reference vector. The white reference vector is calculated using the black reference vector. Color values can be transformed between color imaging systems using the device-independent color coordinate system.
Owner:EASTMAN KODAK CO

Light emitting assembly

A light emitting assembly having a first light source and a second light source. The first and second light sources are oriented such that when the first and second light sources emit light, light emitted from the first and second light sources overlaps and is capable of forming white light. The light emitted from the first light source exhibits color coordinates different from the light emitted from the second light source. Also disclosed is a license plate illuminator having an LED device capable of emitting white light.
Owner:GENTEX CORP

Organic light emitting diode display device

Provided is an organic light emitting diode display device which can improve brightness and color coordinate characteristics in all emission wavelength ranges, and thus can enhance light extraction efficiency and color reproducibility. The organic light emitting diode display device includes a substrate, a first electrode disposed on the substrate, an organic layer disposed on the first electrode and having an emission layer, a second electrode disposed on the organic layer, and first and second refraction layers. A stack of the first and second refraction layers is disposed either between the first electrode and the substrate or on the second electrode. A refractive index of the first refraction layer is smaller than a refractive index of the second refraction layer. A thickness of the first refraction layer is no greater than 100 nm.
Owner:SAMSUNG DISPLAY CO LTD

Optimized phosphor system for improved efficacy lighting sources

A fluorescent lamp including a phosphor layer comprising a phosphor blend including four or more optimized phosphors emitting within a specific spectral range to optimize luminosity for a given color rendering index (CRI) and color coordinated temperature (CCT). The blend will include at least four phosphors selected from the following: a blue phosphor having an emission peak at 440-490 nm, a blue-green phosphor having an emission peak at 475-525 nm, a green phosphor having an emission peak at 515-550 nm, an orange phosphor having an emission peak from 550-600 nm, a deep red phosphor having an emission peak at 615-665 nm, and a red phosphor having an emission peak at 600-670 nm.
Owner:GENERAL ELECTRIC CO +1

Wagering Game With Color-Coordinated Progressive Award Indicators

A gaming machine for conducting wagering games comprises a plurality of reels, each reel having one or more reel symbols with a colored background and one or more reel symbols with a white background. The gaming machine may include a progressive game having multiple progressive jackpots that are awarded based on patterns formed by the reel symbols with the colored background in the outcomes of the wagering game. In some embodiments, a video display device is provided for overlaying a video image on the reels. The video image operates as a colored placeholder to hold any partial patterns that were formed by the reel symbols having the colored background for multiple plays of the wagering game. Reel symbols having the colored background appearing in subsequent outcomes of the wagering game may then be used to complete one or more patterns.
Owner:LNW GAMING INC

Thermal transfer ribbon

A thermal transfer printing medium that contains a thermal transfer layer which contains a first taggant and colorant, wherein: the first taggant comprises a fluorescent compound with an excitation wavelength selected from the group consisting of wavelengths of less than 400 nanometers, wavelengths of greater than 700 nanometers. When the thermal transfer layer is printed onto a white polyester substrate with a gloss of at least about 84, a surface smoothness Rz value of 1.2, and a reflective color represented by a chromaticity (a) of 1.91 and (b) of −6.79 and a lightness (L) of 95.63, when expressed by the CIE Lab color coordinate system, and when such printing utilizes a printing speed of 2.5 centimeters per second and a printing energy of 3.2 joules per square centimeter, a printed substrate with certain properties is produced. The printed substrate has a reflective color represented by a chromaticity (a) of from −15 to 15 and (b) from −18 to 18, and the printed substrate has a lightness (L) of less than about 35, when expressed by the CIE Lab color coordinate system. When the printed substrate is illuminated with light source that excites the first taggant with an excitation wavelength selected from the group consisting of wavelengths of less than 400 nanometers, wavelengths greater than 700 nanometers, the printed substrate produces a light fluorescence with a wavelength of from about 300 to about 700 nanometers.
Owner:INT IMAGING MATERIALS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products