Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

425results about "Frequency to pulse train conversion" patented technology

Frequency measurement method based on FPGA

The invention provides a frequency measurement method based on an FPGA. A standard reference clock is adopted to count the number of pulses of a measured signal in a unit time (1s) and the number of the pulses of the measured signal in the unit time (1s) is the frequency of the signal. Due to the fact that the starting moment of a gate and the finishing moment of the gate are random for the signal, a pulse period quantization error can be produced, and measurement accuracy needs to be analyzed further: the pulse period of a signal to be measured is set to be Tx, the frequency is set to be Fx, and when the measuring time T equals to 1s, the measurement accuracy & meets the equation that &=Tx/T=1/Fx. The fact that measurement accuracy in a direct frequency measurement method is relevant to the frequency of the signal is known, the higher the frequency of the signal to be measured is, the higher the measurement accuracy is, and otherwise, the lower the frequency of the signal to be measured is, the lower the measurement accuracy is. The direct frequency measurement method is only suitable for measurement of the signal at the higher frequency and can not meet the demand that the measurement accuracy remains unchanged in the whole measurement frequency band. In order to overcome the defect of inaccuracy in low-frequency-band measurement, gating signals and the measured signal are used for carrying out dual control on enable signals of the counter, and therefore accuracy is improved.
Owner:LANGCHAO ELECTRONIC INFORMATION IND CO LTD

System for automatically testing parameters of quartz crystal oscillator

The invention discloses a system for automatically testing the parameters of a quartz crystal oscillator, which comprises a master computer and a parameter test card connected with the main board of the master computer, wherein the parameter test card comprises a singlechip and a test circuit and a reference circuit which are connected with the singlechip respectively. The singlechip has a D/A module, an A/D module, a first counter, a second counter and a timer. The test circuit comprises a current amplification circuit, a voltage sampling resistor, a frequency dividing circuit, a first measurement gate control circuit and the crystal oscillator to be measured. The reference circuit comprises a reference frequency source, a frequency multiplication circuit, a second measurement gate control circuit and a frequency dividing and high-frequency signal latch circuit. In the invention, the test card integrates the functions of all apparatuses such as a frequency counter, a digital voltmeter and a digital oscillometer and can be directly inserted in the main board of the computer, and the fully automatic test of various parameters, such as working frequency, working current and start up time, of the quartz crystal oscillator can be realized by a control program.
Owner:天津必利优科技发展有限公司

Ultra-low background gas-filled alpha counter

A method and counter for reducing the background counting rate in gas-filled alpha particle counters wherein the counter is constructed in such a manner as to exaggerate the differences in the features in preamplifier pulses generated by collecting the charges in ionization tracks produced by alpha particles emanating from different regions within the counter and then using pulse feature analysis to recognize these differences and so discriminate between different regions of emanation. Thus alpha particles emitted from the sample can then be counted while those emitted from the counter components can be rejected, resulting in very low background counting rates even from large samples. In one embodiment, a multi-wire ionization chamber, different electric fields are created in different regions of the counter and the resultant difference in electron velocities during charge collection allow alpha particles from the sample and counter backwall to be distinguished. In a second embodiment, a parallel-plate ionization chamber, the counter dimensions are adjusted so that charge collection times are much longer for ionization tracks caused by sample source alpha particles than for those caused by anode source alpha particles. In both embodiments a guard electrode can be placed about the anode's perimeter and secondary pulse feature analysis performed on signal pulses output from a preamplifier attached to this guard electrode to further identify and reject alpha particles emanating from the counter's sidewalls in order to further lower the counter's background.
Owner:WARBURTON WILLIAM K

Technique and electronic circuitry for quantifying a transient signal using threshold-crossing counting to track signal amplitude

Circuitry adapted for carrying out associated techniques for: (a) calculating a damping factor, e.g., a damping ratio represented by ζ, or a quality factor Q, where ζ≈1 / 2Q, for a transient signal received, having been emitted from a resonator-type sensor element; (b) determining amplitude, A, of the transient signal; or (c) generating a frequency response dataset of interrelated points for the transient signal. A threshold comparison circuit is included for converting the transient signal received into a first and second digital waveform; the first digital waveform represents cycle crossings of the transient signal associated with a first threshold value, and the second digital waveform represents cycle crossings of the transient signal associated with a second threshold value. The transient signal may be converted, likewise, into third, and so on, digital waveforms, whereby the third digital waveform represents cycle crossings of the transient signal associated with a third threshold value. Respective digital counters are included, each of which is adapted for determining a total number of cycles of the first, second, third, and so on, digital waveform. A processing unit of suitable speed and capacity is employed for the calculating of the damping factor, determining an amplitude, and / or generating a frequency response dataset.
Owner:SEN TECH BIOMED CORP A BUSINESS ENTITY ORGANIZED UNDER LAWS OF COMMONWEALTH OF PENNSYLVANIA

Method and apparatus for performing eye diagram measurements

An eye diagram analyzer equips each SUT data and clock signal input channel with individually variable delays in their respective paths. For a range of signal delay of n-many SUT clock cycles, the SUT clock signal delay might be set at about n/2. For each data channel there is specified a point in time relative to an instance of the delayed clock signal (data signal delay) and a voltage threshold. The specified combination (data signal delay, threshold and which channel) is a location on an eye diagram, although the trace may or may not ever go through that location. A counter counts the number of SUT clock cycles used as instances of the reference for the eye diagram, and another counter counts the number of times the specified combination of conditions was met (“hits”). After watching a specified combination for the requisite length of time or number of events, the number of SUT clock cycles involved and the associated number of hits are stored in memory using a data structure indexed by the components of the specified combination (data signal delay, threshold). Next, a new combination of data signal delay and threshold is specified and a measurement taken and recorded in the data structure. The process is repeated until all possible combinations within a stated range of data signal delay and threshold voltage (using specified resolution/step sizes for delay and voltage) have been investigated. As this process proceeds under the control of firmware within the logic analyzer, other firmware can be examining the data structure and generating a partial eye diagram visible on a display, and that will be complete soon after the measurement itself is finished.” has been changed to “An eye diagram analyzer equips each SUT data and clock signal input channel with individually variable delays in their respective paths. For a range of signal delay of n-many SUT clock cycles, the SUT clock signal delay might be set at about n/2. For each data channel there is specified a point in time relative to an instance of the delayed clock signal (data signal delay) and a voltage threshold. The specified combination (data signal delay, threshold and which channel) is a location on an eye diagram, although the trace may or may not ever go through that location.
Owner:AGILENT TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products