Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6875 results about "Oscillistor" patented technology

An oscillistor is a semiconductor device, consisting of a semiconductor specimen placed in magnetic field, and a resistor after a power supply. The device produces high-frequency oscillations, which are very close to sinusoidal.

Automatic dispenser apparatus

The invention is directed to improved automatic dispenser apparatus for dispensing sheet material and the like without contact between a user and the dispenser. Proximity detection apparatus is provided to detect the presence of a user in a detection zone generated outside the dispenser. Control apparatus controls actuation of the dispenser in response to the detected user. Preferred forms of the proximity detector include a sensor and a signal detection circuit operatively connected to the sensor. The sensor includes conductors configured to have a capacitance and positioned such that the capacitance is changed by the presence of a user within the detection zone. The signal detection circuit detects the change in capacitance and is provided with an oscillator having a frequency which is affected by the sensor capacitance and a differential frequency discriminator which detects changes in the oscillator frequency. The control apparatus receives the detected frequency change and generates a signal provided to actuate the dispenser to dispense the material. The dispenser control apparatus controls dispenser operation responsive to decreases in battery voltage which occur during the life cycle of the batteries and controls dispenser operation when the batteries near the end of such life cycle. Such control apparatus may be used with any type of battery powered dispenser, including hands-free dispensers and dispensers actuated by direct physical contact with the user.
Owner:ALWIN MFG

Micromechanical resonator device and micromechanical device utilizing same

A micromechanical resonator device and a micromechanical device utilizing same are disclosed based upon a radially or laterally vibrating disk structure and capable of vibrating at frequencies well past the GHz range. The center of the disk is a nodal point, so when the disk resonator is supported at its center, anchor dissipation to the substrate is minimized, allowing this design to retain high-Q at high frequency. In addition, this design retains high stiffness at high frequencies and so maximizes dynamic range. Furthermore, the sidewall surface area of this disk resonator is often larger than that attainable in previous flexural-mode resonator designs, allowing this disk design to achieve a smaller series motional resistance than its counterparts when using capacitive (or electrostatic) transduction at a given frequency. Capacitive detection is not required in this design, and piezoelectric, magnetostrictive, etc. detection are also possible. The frequency and dynamic range attainable by this resonator makes it applicable to high-Q RF filtering and oscillator applications in a wide variety of communication systems. Its size also makes it particularly suited for portable, wireless applications, where, if used in large numbers, such a resonator can greatly lower the power consumption, increase robustness, and extend the range of application of high performance wireless transceivers.
Owner:RGT UNIV OF MICHIGAN

Low-Noise High Efficiency Bias Generation Circuits and Method

A bias generation method or apparatus defined by any one or any practical combination of numerous features that contribute to low noise and/or high efficiency biasing, including: having a charge pump control clock output with a waveform having limited harmonic content or distortion compared to a sine wave; having a ring oscillator to generating a charge pump clock that includes inverters current limited by cascode devices and achieves substantially rail-to-rail output amplitude; having a differential ring oscillator with optional startup and/or phase locking features to produce two phase outputs suitably matched and in adequate phase opposition; having a ring oscillator of less than five stages generating a charge pump clock; capacitively coupling the clock output(s) to some or all of the charge transfer capacitor switches; biasing an FET, which is capacitively coupled to a drive signal, to a bias voltage via an “active bias resistor” circuit that conducts between output terminals only during portions of a waveform appearing between the terminals, and/or wherein the bias voltage is generated by switching a small capacitance at cycles of said waveform. A charge pump for the bias generation may include a regulating feed back loop including an OTA that is also suitable for other uses, the OTA having a ratio-control input that controls a current mirror ratio in a differential amplifier over a continuous range, and optionally has differential outputs including an inverting output produced by a second differential amplifier that optionally includes a variable ratio current mirror controlled by the same ratio-control input. The ratio-control input may therefore control a common mode voltage of the differential outputs of the OTA. A control loop around the OTA may be configured to control the ratio of one or more variable ratio current mirrors, which may particularly control the output common mode voltage, and may control it such that the inverting output level tracks the non-inverting output level to cause the amplifier to function as a high-gain integrator.
Owner:PSEMI CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products