Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

649 results about "Pulse-amplitude modulation" patented technology

Pulse-amplitude modulation (PAM), is a form of signal modulation where the message information is encoded in the amplitude of a series of signal pulses. It is an analog pulse modulation scheme in which the amplitudes of a train of carrier pulses are varied according to the sample value of the message signal. Demodulation is performed by detecting the amplitude level of the carrier at every single period.

Laser imaging radar device and distance measurement method thereof

The invention provides a laser imaging radar device and a distance measurement method thereof. The laser imaging radar device and the distance measurement method thereof aims at the problem that an existing distance range gate laser imaging radar is low in distance resolution. The laser imaging radar device comprises a laser device, a laser modulation unit, an optical antenna unit, a detecting unit, a data processing unit and an image processing unit, wherein the detecting unit is composed of a counter, a gate controller and an array detector, and the data processing unit is composed of an accumulator and a correlator. According to the distance measurement method, an information loading process is carried out on laser signals with constant amplitude by using a phase code pulse amplitude modulation mode. The laser imaging radar device and the distance measurement method thereof have the advantages that the equipment and the method combine the advantages of long detecting distances of the distance ranging gate layer imaging radar and the advantage of high distance measurement resolution of the pulse phase coding mode, and meanwhile the detect of low distance measurement resolution of the distance ranging gate layer imaging radar and the detect of low imaging speed of the pulse phase coding mode are avoided.
Owner:CHINA ELECTRONIC TECH GRP CORP NO 38 RES INST

Multi-level pulse amplitude modulation receiver

Multiple-level phase amplitude (M-PAM) clock and data recovery circuitry uses information from multiple phase detectors to generate one or more data sampling clocks that are optimized for each of the data slicers. One possible 4-PAM implementation includes 3 data slicers, 3 edge slicers, 3 phase detectors, and a single VCO. The phase detector outputs are combined (e.g., via weighted voting, weighted average, minimum error, and/or minimum variance) to determine an optimized phase estimate for the clock used to sample the data at all three data slicers. Another 4-PAM implementation similarly includes 3 data slicers, 3 edge slicers, 3 phase detectors, and a single VCO. The mid-amplitude edge slicer and phase detector are used in combination with the VCO to generate a central phase while a multiple-tap delay line provides N phase variants before and after the central phase. Information from the non-mid-amplitude edge slicers and phase detectors is used to choose a phase from among the phase variants that best suits the other data slicers. In yet another implementation, a single edge slicer, single phase detector, and single VCO is used to generate a key clock which is used by the edge slicer to track the symbol timing. A clock generator provides a single optimized clock (that is offset from the key clock) that is used by the data slicers. Bit error rates from the data slicers are used to adjust the offset until the data slicer clock is optimized with respect to all the slicers. Alternatively, multiple clocks are generated via offsets from the key clock, each being optimized to the data slicer group that it drives.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Multidimensional constellation mapping based coding and modulating method, demodulating and decoding method and system

The invention relates to a multidimensional constellation mapping based coding and modulating method, demodulating and decoding method and system. The coding and modulating method comprises the following steps of: carrying out channel coding and bit interleaving on input information bits to obtain coded interleaved bits; carrying out K-dimensional pulse amplitude modulated constellation mapping on the coded and interleaved bits to obtain a constellation mapping symbol of a K-dimensional real-number vector, wherein K is a positive integer; carrying out constellation rotation on the constellation mapping symbol to obtain a multidimensional rotated constellation mapping symbol of the K-dimensional real-number vector; and carrying out dimension conversion and general real-number interleaving on the multidimensional rotated constellation mapping symbol to obtain a coded and modulated symbol, and outputting the coded and modulated symbol. The method and system in the invention can ensure that the performances of a coding and modulating system and a corresponding demodulating and decoding system approach the channel capacity at medium and low frequency spectrum efficiency under the AWGN (Added White Gaussian Noise) and fading channel conditions and meanwhile, the throughput of the system is taken into consideration.
Owner:TSINGHUA UNIV

Constellation mapping method based on absolute phase shift keying (APSK) constellation map, coded modulation method and system

The invention discloses a constellation mapping method based on an absolute phase shift keying (APSK) constellation map. The constellation mapping method is characterized in that the order M of an APSK constellation is equal to 2<m>; the number n1 of points on each ring is equal to a value of powers to 2, namely n1=2<m1>, the number n1=2<m1>-PSK (phase shift keying), the number of rings R=2<m2>, and a set consisting of different ring radiuses is a special 2<m2>-PAM(pulse amplitude modulation ), wherein m1+m2=m; and the phase deflection theta1 of all the rings are the same. The method comprises the following steps of: B1, for a bit vector which is m in length, setting m1 bits to be only related to the phase, and adopting PSK Gray mapping between the m1 bits and the 2<m1>-PSK; and B2, setting the rest m2 bits to be only related to the amplitude, and adopting PAM Gray mapping between the m2 bits and the 2<m2>-PAM. The invention has the advantages that compared with the conventional coded modulation system adopting quadrature amplitude modulation (QAM) constellation map mapping, the coded modulation system adopting the APSM constellation map Gray mapping can acquire a considerable error control performance gain regardless of adopting independent demapping or iterative demapping by a receiving end.
Owner:TSINGHUA UNIV

Method of modulating variable pulse amplitude position and improving error rate for visible light communication system

The invention discloses a method of modulating a variable pulse amplitude position and improving an error rate for a visible light communication system, belonging to the field of visible light wireless communication technologies. According to the method, modulation of the variable pulse amplitude position is utilized in a modulation module of a signal transmitting end, a modulation method is multi-system modulation capable of combining pulse amplitude position modulation and pulse width modulation, transmission of communication data is guaranteed while a system dimming function is provided, improvement of the communication quality mainly includes that the transmission rate can be improved under the condition of the same symbol rates, the advantages of high multi-system modulation bandwidth efficiency and high pulse position modulation power efficiency are combined, the spectral efficiency can be effectively improved, and compared with the other multi-system modulation manner, the complexity is lower. In order to further improve the error rate of the visible light communication system, the method utilizes a channel balancer based on a feed-forward back propagation multilayer perceptron on a receiving end, so that the error rate is effectively improved, and the communication quality is further improved.
Owner:CHONGQING UNIV OF POSTS & TELECOMM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products