Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1069results about "Parallel/series conversion" patented technology

Apparatus and method for optimized self-synchronizing serializer/deserializer/framer

InactiveUS6459393B1Negatively impact design timeNegatively integrated circuit clock loadingParallel/series conversionViruses/bacteriophagesSerial transferTelecommunications link
An apparatus and method for improving the communication capabilities of computer systems is disclosed. The most preferred embodiments of the present invention use a series of data buffers and data registers to process an incoming high speed data signal. By using the buffers and registers, the incoming signal can be reformatted and manipulated at a much lower frequency than the original transmission frequency. The deserializer of the present invention also samples a greater portion of the incoming data signal than usual to further increase reliability. These various features of the invention provide for a more stable and reliable communication link and will also provide a less expensive solution for serialization/deserialization. The present invention includes a serializer that receives parallel data input from a computer and serializes the data for transmission over a high-speed serial communication link. On the receiving end, the present invention provides a deserializer that can quickly and efficiently transform the serial data back into parallel form for use within the computer system on the receiving end. By utilizing two related clock signals, one clock signal being an integer multiple of the other, a self-synchronizing serializer/deserializer can be created. In addition, by increasing the size of the data sample on the receiving end, the comparisons necessary to retrieve a parallel signal from a serial transmission can occur at a much lower frequency than the frequency of the serial transmission. In the most preferred embodiment, the invention is provided as a integrated solution manufactured on a Peripheral Component Interconnect (PCI) card, thereby allowing the present invention to be easy installed into existing computer systems.
Owner:MEDIATEK INC

Bidirectional multiplexed RF isolator

An integrated circuit single chip isolator provides bidirectional data transfer for a plurality of communications channels. A first and second dies are located on a first and second sides of a voltage isolation barrier in the chip and have a first and second plurality of digital data input/output pins associated therewith. First circuitry located on the first die on a first side of the voltage isolation barrier and third circuitry located on the second die on a second side of the voltage isolation barrier serializes a plurality of parallel digital data inputs from the associated plurality of digital data input/output pins onto a one link across the voltage isolation barrier and transmits synchronization clock signals associated with the plurality of digital data inputs over a another link across the voltage isolation barrier. Second circuitry located on the second die on a second side of the voltage isolation barrier and fourth circuitry located on the first die on a first side of the voltage isolation barrier de-serializes the first plurality of digital data inputs from the first link onto the second plurality of digital data input/output pins and receives the first synchronization clock signal associated with the plurality of digital data inputs on the second link. Switches associated with each of the plurality of input/output pins between transmit and receive circuitry.
Owner:SKYWORKS SOLUTIONS INC

Clock data recovery deserializer with programmable SYNC detect logic

In a CDR (clock data recovery) deserializer, a clock divider receives a recovered clock signal (SCLK) and generates a divided clock signal (RPCLK). The frequency of the divided clock signal is lowered with each cycle of the divided clock signal being generated for each count of cycles of the recovered clock signal up to a predetermined ratio number. A serial-to-parallel shift register shifts in recovered serial data bits with each cycle of the recovered clock signal and outputs the predetermined ratio number of the shifted recovered serial data bits at a predetermined transition of every cycle of the divided clock signal. A SYNC (synchronization) detect logic asserts a VRS (diVider ReSet) signal coupled to the clock divider for controlling the clock divider to generate the predetermined transition for a cycle of the divided clock signal when the VRS signal is asserted. The SYNC detect logic includes a plurality of reloadable register portions for storing a plurality of synchronization bit patterns for a plurality of communications protocol. Each of a plurality of bit pattern comparators inputs an intermediate parallel data output (IPDO) from the shift register with each cycle of the recovered clock signal and compares for every cycle of the recovered clock signal the shifted recovered serial data bits to each of the synchronization bit patterns. A multiplexer selects one of the outputs of the bit pattern comparators as the VRS signal depending on the communications protocol of the recovered serial data bits.
Owner:LATTICE SEMICON CORP

Clock synchronization for asynchronous data transmission

An apparatus for receiving an asynchronous data signal may include a clock generator that generates a clock signal having a frequency approximately equal to the bit rate of the asynchronous data signal. An edge detector may detect transitions of the asynchronous data signal. A dead-band detector may detect when a transition of the clock signal used to sample the data signal occurs within a predetermined amount of time of a transition of the asynchronous data signal so that data sampled on that transition of the clock signal may be invalid. The phase of the clock signal may be adjusted if the transition of the clock signal occurs within this predetermined amount of time. The clock generator may include two programmable counters, one which may be programmed with a bit-rate value so that it generates a signal approximately matching the bit rate of the asynchronous data signal, and the other programmed with a phase-delay value so that it generates a sample clock signal at a phase delay from the signal generated by the first counter. The phase of the sample clock may be adjusted by restarting the counters in response to a transition on the asynchronous data signal. Data may be supplied to a serial-to-parallel converter including a first shift register configured to shift a data word in serially and output the data word in parallel and a second shift register configured to track when the data word had been completely shifted into the first shift register.
Owner:NATIONAL INSTRUMENTS

Adjustable serial-to-parallel or parallel-to-serial converter

A clock synchronizer may include two programmable counters, one which may be programmed with a bit-rate value so that it generates a signal approximately matching the bit rate of the asynchronous data signal, and the other programmed with a phase-delay value so that it generates a sample clock signal at a phase delay from the signal generated by the first counter. The phase of the sample clock may be adjusted by restarting the counters in response to a transition on the asynchronous data signal. Data may be supplied to a serial-to-parallel converter including a first shift register configured to shift a data word in serially and output the data word in parallel and a second shift register configured to track when the data word had been completely shifted into the first shift register and to cause the data word to be outputted in parallel from the first shift register so that a new word may be shifted into the first shift register. A status value may be loaded into the second shift register so that when the last bit is converted in the first shift register, the second shift register shifts out a conversion completed indication. The bit length to be converted may be changed by loading a different status value into the second shift register. This same technique may be employed in a parallel-to-serial data converter or in a general data converter that may convert from serial-to-parallel or parallel-to-serial according to a conversion-type signal.
Owner:NATIONAL INSTRUMENTS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products