Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

745 results about "Laser imaging" patented technology

Laser imaging system with progressive multi-beam scan architecture

A progressive scan architecture for displaying a two-dimensional image by alternately scanning two or more laser beams, one after the other with a time delay between adjacent beams. The beams are arranged to become incident upon a polygon scanner in a row with an approximately uniform spatial separation and an approximately equal angle between adjacent beams. The polygon scanner scans horizontally and a galvanometer-driven mirror scans vertically. Adjacent lines are progressively scanned in sequence from top to bottom, which advantageously reduces or eliminates psycho-visual effects and is tolerant of non-linearities in the vertical scanner, allowing use of a low-cost galvo mirror. Typically, the beams in the row are arranged in pairs, and only one beam from each pair will be scanning at any one time. Embodiments are described in which the duty cycle is slightly less than 50% and the laser illumination is switched between two interleaved beam scans thereby allowing a single modulator to be used for both beams which provides significant cost advantages and improves system efficiency. For full-color images, each of the beams described can incorporate separate red, green and blue (RGB) components which are individually modulated by separate red, green, and blue modulators. The system can be scaled up with one or more additional pairs of beams to improve resolution and / or increase pixel count without requiring a high-speed polygon scanner or a highly-linear galvo scanner. Furthermore, the height of each facet in the polygon mirror need be only one beam diameter and its length need only be two beam diameters, which allows the system to approach the minimum pixel size attainable, which is useful to provide high efficiency and high brightness in the image.
Owner:PHOTERA TECH

Laser imaging radar device and distance measurement method thereof

The invention provides a laser imaging radar device and a distance measurement method thereof. The laser imaging radar device and the distance measurement method thereof aims at the problem that an existing distance range gate laser imaging radar is low in distance resolution. The laser imaging radar device comprises a laser device, a laser modulation unit, an optical antenna unit, a detecting unit, a data processing unit and an image processing unit, wherein the detecting unit is composed of a counter, a gate controller and an array detector, and the data processing unit is composed of an accumulator and a correlator. According to the distance measurement method, an information loading process is carried out on laser signals with constant amplitude by using a phase code pulse amplitude modulation mode. The laser imaging radar device and the distance measurement method thereof have the advantages that the equipment and the method combine the advantages of long detecting distances of the distance ranging gate layer imaging radar and the advantage of high distance measurement resolution of the pulse phase coding mode, and meanwhile the detect of low distance measurement resolution of the distance ranging gate layer imaging radar and the detect of low imaging speed of the pulse phase coding mode are avoided.
Owner:CHINA ELECTRONIC TECH GRP CORP NO 38 RES INST

Feedback mechanism for smart nozzles and nebulizers

Nozzles and nebulizers that can be adjusted to produce an aerosol with optimum and reproducible quality based on the feedback information obtained using laser imaging techniques are provides. Two laser-based imaging techniques based on particle image velocimetry (PIV) and optical patternation are provided to map and contrast the size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. The flow field of droplets is illuminated by two pulses from a thin laser sheet with a known time difference. The scattering of the laser light from droplets is captured by a charge coupled device (CCD), providing two instantaneous images of the particles. Pointwise cross-correlation of the corresponding images yields a two-dimensional (2-D) velocity map of the aerosol velocity field. For droplet size distribution studies, the solution is doped with a fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. The ratio of the LIF/Mie images provides relative droplet size information, which is then scaled by a point calibration method via a phase Doppler particle analyzer (PDPA). Two major outcomes are realized for three nebulization systems: 1) a direct injection high efficiency nebulizer (DIHEN); 2) a large-bore DIHEN (LB-DIHEN); and 3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. First, the central region of the aerosol cone from the direct injection nebulizers and the nebulizer-spray chamber arrangement comprise fast (>13 m/s and >8 m/s, respectively) and fine (<10 μm and <5 μm, respectively) droplets as compared to slow (<4 m/s) and large (>25 μm) droplets in the fringes. Second, the spray chamber acts as a momentum separator, rather than a droplet size selector, as it removes droplets having larger sizes or velocities. Smart-tunable nebulizers may utilize the measured momentum as a feedback control for adjusting certain operation properties of the nebulizer, such as operating conditions and/or critical dimensions.

Three-dimensional laser imaging system planar point cloud data triangularization processing method

The invention discloses a three-dimensional laser imaging system planar point cloud data triangularization processing method. According to the three-dimensional laser imaging system planar point cloud data triangularization processing method, firstly, three-dimensional point cloud data which are on the same plane are obtained from three-dimensional point cloud data, the three-dimensional point cloud data which are on the same plane are projected to a two-dimensional plane to form plane two-dimensional point cloud data, a virtual central point of the two-dimensional point cloud data is calculated, a point which is closest to the virtual central point is used as an actual central point of scattered data, distances between discrete points and the actual central point are compared, the two-dimensional point cloud data are presorted to find an initial triangle and initial boundary vertexes, the initial boundary vertexes are sorted anticlockwise, all the two-dimensional point cloud data are inserted into according to the arrayed sequence, boundary vertex update and triangle update are conducted, and planar point cloud data of a plane triangulation network are mapped back to a three-dimensional coordinate to generate three-dimensional triangular network model of an article to be scanned. Compared with the prior method, the three-dimensional laser imaging system planar point cloud data triangularization processing method has the advantages that the train of thought is simple and clear, programming is easy to achieve, and planes with holes or concave surfaces or other complex surface conditions can be processed.
Owner:BEIJING INST OF AEROSPACE CONTROL DEVICES

Treatment method for surface target of unmanned ship based on laser imaging radar

The invention provides a treatment method for a surface target of an unmanned ship based on a laser imaging radar.The method based on the unmanned ship of the laser image radar comprises the following steps: S1, generating a three-dimensional cloud point image on the water surface around the unmanned ship by the laser imaging radar, the three-dimensional cloud point image comprises a target cloud point and a non-target cloud point;conducting dimension reduction treatment to the three-dimensional cloud point image, projecting the three-dimensional cloud point image to a two-dimensional XY-grid plane, counting the position information and height information of each grid, S2, cutting the target cloud point and non-target point cloud, S3,clustering the target point cloud obtained after being cut, extracting the position information of each target, forming the target sample set, extracting multi-dimensional eigenvector collected by the target sample; S4, training the target sample set,obtaining the obtained identifying function, and identifying the target point cloud by the identifying function. The treatment method provided in the invention can detect and identify the target of the water surface around the unmanned ship accurately.
Owner:GUANGDONG HUST IND TECH RES INST +2

Photon-counting imaging laser radar for filtering noise in real time by adopting adjacent pixel element threshold value method

The invention relates to a photon-counting imaging laser radar for filtering noise in real time by adopting an adjacent pixel element threshold value method, and the radar relates to the technical field of laser radar. The problem that the photon-counting imaging laser radar noise filtering technology can not meet the real-time application requirement is solved. A pulse laser signal enters a beam splitter to form two signals; one signal is processed through a PIN detector and is outputted to an adjacent pixel element threshold value processing module; the other signal is collimated through a optical transmitting system to radiate a target; the other signal is spread by the target and outputted an echo signal, the echo signal passes through a receiving optical system and a Gm-APD single-photon detector array, the adjacent pixel element threshold value processing module records the echo signal comprising time correlation and compares the signal with an initial signal, so as to obtain the round-trip time difference of the pixel corresponding to the Gm-APD single-photon detector array, the round-trip time difference is calculated to obtain a distance value of the corresponding pixel target, and a target 3D distance image is obtained finally. The radar is suitable for filtering the noise in laser imaging.
Owner:HARBIN INST OF TECH

Orthoptic synthetic aperture laser imaging radar

ActiveCN102435996AReduce the effects of phase interferenceBig optic toesElectromagnetic wave reradiationHigh resolution imagingRadar systems
The invention relates to an orthoptic synthetic aperture laser imaging radar. The orthoptic synthetic aperture laser imaging radar comprises a laser light source, a transmission polarization beam splitter, a horizontal polarization optical path beam deflector, a horizontal polarization optical path transform lens, a vertical polarization optical path beam deflector, a vertical polarization optical path transform lens, a transmission polarization beam combiner, a transmitter telescope ocular, a transmitter telescope primary lens, a receiver telescope, a receiving polarization beam splitter, a 2 * 490 DEG optical bridge, an inphase channel balanced detector, an inphase channel A / D (analogue / digital) converter, a 90 DEG of phase shift channel balanced detector, a 90 DEG of phase shift channel A / D (analogue / digital) converter, a pluralizing processor, a digital image processor and a control computer. The orthoptic synthetic aperture laser imaging radar automatically eliminates phase changes and interference of atmosphere, motion platforms, optical radar systems and speckles, has high resolution imaging in larger optical footprint and larger receiving aperture, does not need optical delay lines, does not need real-time beat frequency signal phase synchronization, does not have shadows during imaging, and can be used for various lasers with single-module and single-frequency properties.
Owner:SHANGHAI INST OF OPTICS & FINE MECHANICS CHINESE ACAD OF SCI

Three-dimensional laser imaging method based on photon counting compressive sampling phased array

The invention provides a three-dimensional laser imaging method based on a photon counting compressive sampling phased array, which is applicable to the fields of all-weather target identification, high-precision terrain survey, precise nondestructive examination and the like, and belongs to the technical field of laser imaging and image processing. The three-dimensional laser imaging method includes steps that at first, a pulse signal generator generates pulse signals and drives a laser device to transmit laser pulse, and a liquid crystal optical phased array is adopted to modulate illuminating laser via a certain measurement matrix so as to illuminate for a target; optical pulse reflected by the target is received by a Geiger-mode avalanche photodiode, a time-correlated single photon counter is used for recording the numbers of photons returned at different time intervals, and the numbers of the photons returned at different time intervals are integrated so as to obtain a measured vector quantity; and the measured matrix and the measured vector quantity are brought into a compressive sampling recovery algorithm, so that a three-dimensional image of the target is reconstructed. The three-dimensional laser imaging method has a good practical value and a wide application prospect in the technical field of laser imaging and digital image processing.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products