Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3449 results about "Optical network unit" patented technology

An optical network unit is a device that transforms incoming optical signals into electronics at a customer's premises in order to provide telecommunications services over an optical fiber network.

Access system and method for transmitting Ethernet signal and mobile communication signal

An access system and method for transmitting Ethernet signals and mobile communication signals. The system includes a near-end host unit and remote-end user units. Through the near-end host unit, the Ethernet signals and mobile communication signals can be combined. The near-end and remote-end host units are connected through four pairs of twisted pairs. The combined Ethernet and mobile communication signals are sent to a user terminal for providing broadband access service and wireless access service. Premises network resources can be used without re-laying category 5 cables, so the investment is less and it is quick and convenient to provide service. Furthermore there needs to be added only one host unit beside the optical network unit equipment, and replace the user terminal simultaneously. Power is not needed to be taken at the user's home. The placement position of the terminal is flexible without being limited by the power-taking positions.
Owner:CICT MOBILE COMM TECH CO LTD

Epon with power-saving features

One embodiment provides a system for power saving in an Ethernet Passive Optic Network (EPON). The system includes an optical line terminal (OLT), an optical network unit (ONU), a traffic-detection module configured to detect status of traffic to and from the ONU, and a power-management module configured to place the ONU in sleep mode based on the detected traffic status. The ONU includes an optical transceiver that includes an optical transmitter configured to transmit optical signals to the OLT and an optical receiver configured to receive optical signals from the OLT.
Owner:AVAGO TECH INT SALES PTE LTD

Dynamic bandwidth allocation and service differentiation for broadband passive optical networks

A dynamic upstream bandwidth allocation scheme is disclosed, i.e., limited sharing with traffic prediction (LSTP), to improve the bandwidth efficiency of upstream transmission over PONs. LSTP adopts the PON MAC control messages, and dynamically allocates bandwidth according to the on-line traffic load. The ONU bandwidth requirement includes the already buffered data and a prediction of the incoming data, thus reducing the frame delay and alleviating the data loss. ONUs are served by the OLT in a fixed order in LSTP to facilitate the traffic prediction. Each optical network unit (ONU) classifies its local traffic into three classes with descending priorities: expedited forwarding (EF), assured forwarding (AF), and best effort (BE). Data with higher priority replace data with lower priority when the buffer is full. In order to alleviate uncontrolled delay and unfair drop of the lower priority data, the priority-based scheduling is employed to deliver the buffered data in a particular transmission timeslot. The bandwidth allocation incorporates the service level agreements (SLAs) and the on-line traffic dynamics. The basic limited sharing with traffic prediction (LSTP) scheme is extended to serve the classified network traffic.
Owner:NEW JERSEY INSTITUTE OF TECHNOLOGY

Multi-purpose optical fiber access network

The present invention relates to an optical fiber access network, and more particularly, to a multi-purpose optical fiber access network capable of accepting all services provided by hybrid wireline / wireless access network.According to the present invention, in an optical fiber access network of double star structure where a central office / headend and several optical network units are connected through a splitting / combining device, a multi-purpose optical fiber access network capable of accepting not only wired telephone service, wired CATV and wired data service but also various kinds of wireless services including LMDS, WLL, PCS and so forth, in which LMDS local wireless base station is located in a place adjacent to the splitting / combining device, WLL local wireless base station is located in a place adjacent to the splitting / combining device, optical network unit connects the conventional wired network composed of said optical fiber access network, twisted pair and coaxial cable, telephone service, data service and CATV service are provided through the optical network unit and PCS local wireless base station is located in a place adjacent to the optical network unit, is provided.
Owner:KOREA ADVANCED INST OF SCI & TECH

Method and apparatus for traffic shaping in a broadband fiber-based access system

The invention is a novel method and apparatus for controlling the flow of traffic between a host digital terminal (HDT) and a plurality of optical network units (ONUs). Each ONU is connected to the HDT by optical fiber and to a plurality of subscribers by a respective plurality of subscriber drops (typically pre-existing copper twisted pairs). The bandwidth on the fiber, although large, is usually inferior to the total bandwidth that can be transmitted across the subscriber drops. Therefore, both upstream and downstream traffic may become congested at various "choke points" under certain circumstances of usage. Ordinarily, the data is buffered at the choke points, leading to the installation of large queues within each ONU. This solution is not only expensive, but is inadequate since the required queue size is dependent on the maximum transaction size, which has no hard upper bound. In contrast, the present invention provides a traffic shaper located in the HDT, which gives centralized control of the traffic flowing to and from the ONUs. Consideration of the priority and destination of each traffic cell is taken into account by the traffic shaper to ensure that the capacity of the fiber and of the individual drops is never exceeded, irrespective of the transaction sizes, thereby eliminating the need for costly buffers in the outside plant. Any maintenance or repairs of the traffic shaper can be easily effected without field visits, due to its centralized location.
Owner:RPX CLEARINGHOUSE

Methods and apparatus for achieving multiple bit rates in passive optical networks

Systems and techniques for multiple bit rate optical data transmission. A passive optical network includes an optical line termination unit (OLT) connected to one or more optical network units (ONUs) by optical elements. The OLT is capable of performing downstream transmission to the ONUs at each of a variety of different bit rates, and each ONU performs upstream transmission at one or more bit rates. The OLT can sense a bit rate of a received transmission and change its operation so as to receive and process the transmission exhibiting the sensed bit rate. Each of the ONUs receives and processes downstream transmissions at one or more bit rates, but each ONU is capable of maintaining a phase and frequency lock to downstream transmissions at all bit rates supported by the OLT. One or more of the ONUs may also receive and process downstream transmissions exhibiting different or changed bit rates.
Owner:ALCATEL LUCENT SAS

MAC security entity for link security entity and transmitting and receiving method therefor

An apparatus and method for providing a security function of frames transmitted between optical network terminals (OLTs) and optical network units (ONUs) in an Ethernet passive optical network (EPON) providing media access control (MAC) services are provided. The apparatus includes: a frame classifier distinguishing the type of a frame, and based on the logical link identifier (LLID) of the distinguished frame, determining whether or not the frame is a security link to which a security function is to be applied; a bypass unit delaying a no-security-function frame so that a processing time for converting the security-function-applied frame classified in the frame classifier into an encrypted frame is the same as a time for processing the no-security-function frame; and a parameter generation unit transmitting in relation to each of the LLIDs, a parameter set value including a security-function-application setting signal used in the encryption, decryption and authentication of the frame, a frame decryption signal, an encryption mode selection signal, and an authentication intensity adjustment signal.
Owner:ELECTRONICS & TELECOMM RES INST

Point-to-multipoint passive optical network that utilizes variable-length packets

A point-to-multipoint passive optical network transmits downstream data from an optical line terminal (OLT) to multiple optical network units (ONUs) in variable-length packets and upstream data from the ONUs to the OLT in variable-length packets utilizing time division multiplexing to avoid transmission collisions. In an embodiment, the variable-length downstream packets and the variable-length upstream packets are formatted according to IEEE 802.3. In an embodiment, the length of the variable-length downstream and upstream packets is related to the length of Internet protocol (IP) datagrams carried within the packets.
Owner:FUTUREWEI TECH INC

Hybrid passive optical network system

Provided is a hybrid passive optical network (PON) system. The hybrid PON system of wavelength division multiplexing (WDM) / time division multiplexing (TDM) may include an optical line terminal (OLT) and an optical network unit (ONU). The OLT and the ONU may transmit a signal based on wavelength reuse using a seed light source and a reflective modulator. The light source may include a seed light source having a single wavelength, two seed light sources having different wavelength bands, and a light source having a wavelength tunable characteristic.
Owner:ELECTRONICS & TELECOMM RES INST

Method for operating wavelength-division-multiplexed passive optical network

Disclosed is a method for operating a wavelength-division-multiplexed passive optical network (WDM-PON) including an optical line terminal (OLT) and a plurality of optical network units (ONUs), each of which is connected to the OLT and communicates with the OLT. The method comprises the steps of transmitting a first control channel including allocation information of downstream data channels and allocation information of time slots for the downstream data channels to each of the plurality of ONUs; and transmitting downstream data to the plurality of ONUs using their associated downstream data channels, each having at least one time slot, based on the information included in the first control channel.
Owner:SAMSUNG ELECTRONICS CO LTD

Performance monitoring in passive optical networks

One embodiment provides a system for performance monitoring in a passive optic network (PON). The system includes an optical line terminal (OLT) and an optical network unit (ONU). The OLT includes an optical transceiver configured to transmit optical signals to and receive optical signals from the ONU, and a performance monitoring mechanism configured to monitor performance of the PON based on received optical signals.
Owner:AVAGO TECH INT SALES PTE LTD

Optical line terminal for managing link status of optical network units and gigabit ethernet passive optical network employing same

A system and method for managing link status in Gigabit Ethernet passive optical network (GE-PON) units (ONUs) is disclosed. The GE-PON comprises one or more ONUs allocated data transmission periods, respectively. Each of the ONUs sends a report signal and a data signal in a corresponding one of the allocated data transmission periods. The report signal contains a signal to request allocation of a bandwidth for data signal transmission in a next window period. The GE-PON further comprises an optical splitter having its one side connected with the ONUs and its other side connected with at least one optical communication channel. The optical splitter switches an input signal to a desired destination. The GE-PON further comprises an optical line terminal (OLT) for determining whether the report signal is received, identifying a specific one of the ONUs having sent the report signal when the report signal is received, determining whether the data signal is received from the specific ONU in a specific one of the data transmission periods allocated to the specific ONU, and discriminating and managing a link status of the specific ONU in accordance with the determination made.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and apparatus for monitoring optical fibers of passive optical network system

Provided are an apparatus and method for monitoring optical fibers of a passive optical network system including an optical line termination located in a central office, a remote node that is a local office, and optical network units on the subscriber side. The apparatus respectively allocates monitoring light wavelengths to optical network units such that optical fibers of the respective optical network units can be identified and monitored using the monitoring light wavelengths, combines a monitoring light having various wavelengths and a downward optical signal using the WDM coupler, and analyzes signal waveforms of the monitoring light having various wavelengths reflected from the optical network units, to detect the position of a defect generated on an optical line. Accordingly, it is possible to transmit optical signals and monitor the physical states of the optical fibers of the optical network units.
Owner:ELECTRONICS & TELECOMM RES INST

Passive optical network system employing sub-carrier multiplexing and orthogonal frequency division multiple access modulation schemes

Implementations of the present principles include methods, systems and apparatuses for transmitting data through a sub-carrier multiplexing and orthogonal frequency-division multiple access passive optical network. In accordance with aspects of the present principles, a plurality of optical network units are assigned electrical carrier frequency bandwidths that are narrower than a system capacity bandwidth. Modulation of optical waves transmitted between an optical line terminal and each optical network unit is conducted on different orthogonal sub-carrier frequencies within the assigned bandwidths such that sampling of said orthogonal sub-carrier frequencies is limited to the assigned electrical carrier frequency bandwidths. The waves are thereafter received and demodulated for the extraction of data.
Owner:NEC CORP

Communication recovering system for wavelength division multiplexed passive optical network

ActiveUS20060104638A1Enhance economical efficiencyMargin is maximizedLaser detailsOptical multiplexTransceiverNetwork structure
A communication recovering system for a wavelength division multiplexed passive optical network (WDM PON). The communication recovering system can recover fault of optical fibers between the central office and the remote nodes without additional optical fibers by grouping two remote nodes and employing an AWG having periodic transmission characteristics, and can also simply and rapidly recover such a fault with minimal optical loss using an AWG of 2×N structure and an On-Off optical switch, although protection optical fibers are additionally installed therein. The system can rapidly recover fault of optical fibers between a local office and optical network units, 1:N manner, using 2×2 optical switches, which are installed to each of the optical network units, a reserved transmitter and receiver, and a transceiver. The communication recovering system has advantages in that it can simplify network structure, be cost-effectively implemented, reduce optical loss, and rapidly perform protection of optical fiber fault.
Owner:KOREA ADVANCED INST OF SCI & TECH

Method and system for processing downstream packets of an optical network

Unlike the conventional art which polices data at the entry points of a network, a transceiver node can police or monitor downstream bandwidths for quality of service at exit portions of an optical network. That is, the transceiver node can police downstream communication traffic near the outer edges of an optical network that are physically close to the subscribers of the optical network. In this way, a network provider can control the volume or content (or both) of downstream communications that are received by subscribers of the optical network. In addition to controlling the volume of communications that can be received by a subscriber, the transceiver node employs a plurality of priority assignment values for communication traffic. Some priority assignment values are part of a weighted random early discard algorithm that enables an output buffer to determine whether to drop data packets that are destined for a particular subscriber. In one exemplary embodiment, a weighted random early discard (WRED) priority value can be assigned according to the type of communication traffic supported by a packet.
Owner:ARRIS SOLUTIONS

Passive optical network unit management and control interface support for a digital subscriber line network

An optical network unit for managing digital subscriber line (xDSL) connections to a passive optical network. According to one embodiment, the optical network unit comprises data structures in the form of managed entities that are issued by the optical network unit for managing each of the xDSL connections. Each managed entity is associated with one or more network features and comprises one or more elements further comprising relationships to other managed entities, attributes, actions, and notifications. The passive optical network provides a data connection between the individual xDSL subscriber connections and external networks, such as the Internet and a switched telephone network.
Owner:SIEMENS AG

Apparatus, system, computer program, and method for providing a multimedia-over-coax-alliance network in conjunction with an optical network

An apparatus, system, computer program, and method for providing a Multimedia over Coax Alliance (MoCA) (or other multimedia-over-coaxial cable technology) network in conjunction with an optical network. In example embodiments, MoCA data is communicated between network nodes in an optical signal. In other example embodiments, MoCA data, or other data, is transmitted in optical frequencies above 860 MHz.
Owner:TELLABS VIENNA

System and method for scheduling timeslots for transmission by optical nodes in an optical network

A signal strength corresponding to an incoming optical burst from each of a plurality of optical nodes is measured. The measurements can be performed at system start-up, configuration / installation of the optical nodes and / or at certain intervals of operation of the optical nodes. Signal strength information for the optical nodes based on the measurements is stored in memory. When scheduling the optical nodes for transmission, a preferred transmission order is determined in response to the stored signal strength information. In an embodiment, the preferred order is determined to reduce differences in signal strength levels between consecutive optical bursts.
Owner:ALCATEL LUCENT SAS

Method and system for processing upstream packets of an optical network

A protocol for an optical network can control the time at which subscriber optical interfaces of an optical network are permitted to transmit data to a transceiver node. The protocol can prevent collisions of upstream transmissions between the subscriber optical interfaces of a particular subscriber group. With the protocol, a transceiver node close to the subscriber can allocate additional or reduced upstream bandwidth based upon the demand of one or more subscribers. That is, a transceiver node close to a subscriber can monitor (or police) and adjust a subscriber's upstream bandwidth on a subscription basis or on an as-needed basis. The protocol can account for aggregates of packets rather than individual packets. By performing calculation on aggregates of packets, the algorithm can execute less frequently which, in turn, permits its implementation in lower performance and lower cost devices, such as software executing in a general purpose microprocessor.
Owner:ARRIS ENTERPRISES LLC

Methods and Devices for Wavelength Alignment in WDM-PON

An optical network unit for a passive optical network (10), configured to: initiate an upstream wavelength (wus) for an upstream signal (US) from the optical network unit to an optical line terminal (10); iteratively, until an iteration criterion is met, i) transmit the upstream signal (US) to the optical line terminal (10), ii) receive from the optical line terminal (10) power level data (p) for the upstream signal (US) as measured by the optical line terminal (10), and iii) set the upstream wavelength (wus) for the upstream signal (US) to a new wavelength-value; and adjust the upstream wavelength (wus) to a wavelength-value previously set for the upstream signal (US) and associated with power level data corresponding to a certain power level. A passive optical network system, the optical line terminal and related methods are also disclosed.
Owner:TELEFON AB LM ERICSSON (PUBL)

Quantum cryptography on a multi-drop optical network

A system includes an optical network unit and a head-end or central office connected to a multi-drop optical network. The optical network unit transmits dim optical pulses via the multi-drop optical network using quantum cryptographic mechanisms to distribute encryption key symbols, where the dim optical pulses include one of single-photon optical pulses or weak attenuated optical pulses. The head-end or central office detects the dim optical pulses from the optical network unit, derives the encryption key symbols from the detected dim optical pulses, and encrypts data transmitted to the optical network unit using the encryption key symbols.
Owner:RAYTHEON BBN TECH CORP

Passive optical network system and downlink transmission method thereof

The embodiment of the invention discloses a passive optical network system and a downlink transmission method thereof. The passive optical network system comprises an optical line terminal, an optical distribution network and a plurality of optical network units. The optical line terminal is used to send a downlink multi-wavelength optical signal composed of a plurality of downlink optical signal wavelength division multiplexing having different wavelengths, and the optical distribution network comprises a first-stage optical splitter, a plurality of second-stage optical splitters and a plurality of filter modules. The first-stage optical splitter is used to divide a downlink multi-wavelength signal sent by the optical line terminal into a plurality of downlink multi-wavelength signals, the plurality of filter modules are used to carry out filter processing on the plurality of downlink multi-wavelength signals to obtain a downlink single wavelength optical signal of which the wavelength corresponds to a channel central wavelength; wherein, the channel central wavelengths of the plurality of filter modules respectively correspond to the plurality of downlink optical signals having different wavelengths, the second-stage optical splitters are used to carry out spectral processing on the downlink single wavelength signal and then provide the downlink single wavelength signal to the optical network unit.
Owner:李亚泽

Passive optical network unit management and control interface support for a digital subscriber line network

An optical network unit for managing digital subscriber line (×DSL) connections to a passive optical network. According to one embodiment, the optical network unit comprises data structures in the form of managed entities that are issued by the optical network unit for managing each of the ×DSL connections. Each managed entity is associated with one or more network features and comprises one or more elements further comprising relationships to other managed entities, attributes, actions, and notifications. The passive optical network provides a data connection between the individual ×DSL subscriber connections and external networks, such as the Internet and a switched telephone network.
Owner:SIEMENS AG

System for operating an Ethernet data network over a passive optical network access system

A data communications system which provides multiple logical channels on a passive optical network (PON) using subcarrier multiple access (SCMA). The PON includes multiple optical network units (ONU) which each communicate with a head-end over a logical channel. Collisions among upstream transmissions are thereby avoided and high speed Ethernet service over large distances is made possible.
Owner:WSOU INVESTMENTS LLC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products