Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

312 results about "Wavelength division multiplexing passive optical networks" patented technology

Wavelength-division multiplexing-passive optical network

Disclosed is a wavelength-division multiplexing-passive optical network having a central office including a plurality of first working and protection transmit/receive modules, working and protection optical transmitters, and a plurality of first optical switches, the first working and protection transmit/receive modules generating downstream optical signals and detecting upstream optical signals having corresponding wavelengths, the working and protection optical transmitters generating broadcasting optical signals, the first optical switches performing a switching operation when faults occur, a plurality of subscriber units for receiving broadcasting optical signals and downstream optical signals having corresponding wavelengths and generating upstream optical signals, the subscriber units including second optical switches, a remote node including working and protection optical splitters for dividing intensity of the broadcasting optical signals, the remote node being positioned between the subscriber units and the central office, working and protection main optical fibers for linking the central office with the remote node; and a plurality of working and protection branch optical fibers for linking the remote node with the subscriber units, respectively.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and network architecture for upgrading legacy passive optical network to wavelength division multiplexing passive optical network based next-generation passive optical network

The present invention discloses a network architecture for upgrading a legacy time division multiplexing-passive optical network (TDM-PON) to a wavelength division multiplexing-passive optical network (WDM-PON) based next-generation passive optical network (next-generation PON), wherein the legacy TDM-PON comprises: a central office (CO) having a first optical line termination (OLT); a remote node (RN) having a splitter; a single mode fiber (SMF) connecting the first OLT and the splitter; and a first group of one or more optical network terminations (ONTs) being connected to the splitter by a first group of one or more distribution fibers, and wherein the network architecture further comprises: in case that the next-generation PON is a WDM-PON, a first apparatus for combining and splitting wavelength bands being positioned between the SMF and the first OLT, in order to add a second OLT to be used for the WDM-PON within the CO or within another CO which is located in a position different from the CO, while sharing the SMF; a second apparatus for combining and splitting wavelength bands being positioned at a front terminal of the splitter; and an arrayed waveguide grating (AWG) being connected to the second apparatus for combining and splitting wavelength bands within the RN, and being connected to a second group of one or more ONTs by a second group of one or more distribution fibers within the RN or within another RN which is located in a position different from the RN.
Owner:KOREA ADVANCED INST OF SCI & TECH

Method, system and device for transmitting wavelength division multiplexing passive optical network

The embodiment of the invention discloses a method for transmitting a wavelength division multiplexing passive optical network. The method comprises the following steps of: receiving a downlink optical signal from local terminal equipment, and dividing the downlink optical signal into a first optical signal and a second optical signal; demodulating the first optical signal so as to restore downlink data carried in the first optical signal; performing reflection irrelevant to polarization on the second optical signal so as to obtain a reflected light of which the polarization direction is orthogonal to the second optical signal, and loading uplink data to the reflected light corresponding to the second optical signal by a modulation method so as to generate an uplink optical signal carrying the uplink data; and transmitting the uplink optical signal to the local terminal equipment. By the embodiment of the invention, the decoloring of a light source can be realized, the cost is reduced effectively, and the transmission performance after reflection and modulation is guaranteed. The embodiment of the invention also discloses a system and a device for transmitting the wavelength division multiplexing passive optical network.
Owner:HUAWEI TECH CO LTD

Apparatus and method for olt and onu for wavelength agnostic wavelength-division multiplexed passive optical networks

In a Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) utilizing a conventional downstream optical signal reusing method, there is an inventory problem that different optical transmitter types need to be provided for the operation, management, replacement, etc. of a system. A WDM-PON system according to the present invention, includes: a seed light (SL) unit generating a seed light whose wavelength intervals and center wavelengths are adjusted using at least one seed light source; an optical line terminal (OLT) receiving the wavelength-multiplexed seed light from the seed light unit, transmitting a downstream optical signal to a subscriber of the WDM-PON, and receiving a upstream optical signal from the subscriber; and an optical network unit (ONU) receiving the downstream optical signal from the OLT, flattening and modulating the downstream optical signal with upstream data so that the downstream optical signal is reused for carrying upstream data. It is possible to improve the quality and reliability of downstream transmission by sufficiently increasing an extinction ratio, and improve the quality and reliability of upstream transmission by sufficiently flattening an input downstream optical signal in a semiconductor optical amplifier.
Owner:ELECTRONICS & TELECOMM RES INST

Method and network architecture for upgrading legacy passive optical network to wavelength division multiplexing passive optical network based next-generation passive optical network

The present invention discloses a network architecture for upgrading a legacy time division multiplexing-passive optical network (TDM-PON) to a wavelength division multiplexing-passive optical network (WDM-PON) based next-generation passive optical network (next-generation PON), wherein the legacy TDM-PON comprises: a central office (CO) having a first optical line termination (OLT); a remote node (RN) having a splitter; a single mode fiber (SMF) connecting the first OLT and the splitter; and a first group of one or more optical network terminations (ONTs) being connected to the splitter by a first group of one or more distribution fibers, and wherein the network architecture further comprises: in case that the next-generation PON is a WDM-PON, a first apparatus for combining and splitting wavelength bands being positioned between the SMF and the first OLT, in order to add a second OLT to be used for the WDM-PON within the CO or within another CO which is located in a position different from the CO, while sharing the SMF; a second apparatus for combining and splitting wavelength bands being positioned at a front terminal of the splitter; and an arrayed waveguide grating (AWG) being connected to the second apparatus for combining and splitting wavelength bands within the RN, and being connected to a second group of one or more ONTs by a second group of one or more distribution fibers within the RN or within another RN which is located in a position different from the RN.
Owner:KOREA ADVANCED INST OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products