Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

521 results about "Pulse noise" patented technology

Method and system for detecting, timing, and correcting impulse noise

A system for detecting and correcting impulse noise present on an input data signal includes an impulse detector module receiving an input data signal and producing as output an correction enable signal indicating when an impulse correction is required. An impulse corrector module receives the input data signal and a correction enable signal and produces a corrected data signal, e.g., having the impulse canceled or blanked, as output. A reliability estimator and selector module receives the corrected data signal and the input data signal and selects as output the input signal which is more reliable. In one embodiment, the impulse detector includes first and second complementary impulse detectors, the outputs of which are analyzed by an enable and correction module to produce an impulse detection signal with improved accuracy. Preferably, the enable and correction module also indicates the most appropriate type of impulse correction in accordance with the detection signals from the complementary detectors. A novel system and method of detecting impulses based on Gram Schmidt techniques is also presented. In this method, one or more channels of a multi-channel data signal are kept free of data. When a whitening filter is applied, impulses on these quiet channels are emphasized. The Gram Schmidt technique exploits this fact to provide for improved impulse detection. The system can be modified to detect other types of low dimensionality noise.
Owner:RPX CORP

Pulse wave detecting device and pulse measurer

PCT No. PCT/JP98/01128 Sec. 371 Date Nov. 4, 1998 Sec. 102(e) Date Nov. 4, 1998 PCT Filed Mar. 17, 1998 PCT Pub. No. WO98/41143 PCT Pub. Date Sep. 24, 1998The present invention relates to a pulse wave detecting device for detecting pulse waves, and to a pulse measurer employing this pulse wave detecting device. The present invention addresses the problem of obtaining a pulse wave signal in which the noise components have been suitably removed from a pulse waveform, and of determining the pulse rate with high accuracy based on this pulse wave signal. The method for deriving the pulse wave signal and pulse rate is as follows. The pulse wave signal from pulse wave detecting sensor unit (30) is temporarily stored in buffer (503). When impulse noise is detected in the pulse wave signal in buffer (503) by impulse noise detecting means (505), the band pass for first digital filter (506) becomes a hill-shaped curve centered on the frequency corresponding to the preceding pulse rate, and impulse noise in the pulse wave signal output from buffer (503) is decreased. Thereafter, overall noise and body movement components are decreased in the pulse wave signal by means of second digital filter (507) and third digital filter (508). The signal is then subjected to frequency analysis by frequency analyzer (509), and the pulse rate is calculated from the results of this analysis.
Owner:SEIKO EPSON CORP +1

Suppression of radio frequency interference and impulse noise in communications channels

A noise suppression circuit for a communications channel (10) comprises a hybrid device (11) coupled to the channel for providing a differential output signal corresponding to a received signal. A delay unit (12) delays the differential signal by a suitable amount to allow for the generation and subtraction of a noise estimate. A summing device (13) extracts a digital common mode signal from the channel, and a noise estimation unit (16) provides a common mode noise estimate signal in dependence upon a history of the common mode signal over a predetermined period of time and over a plurality of frequency bands. The common mode noise estimate signal is combined subtractively (19) with the delayed differential signal to cancel common mode noise elements of the delayed differential signal. The noise estimation unit may comprise an analysis filter bank (20) for producing a plurality of subband signals (S1-SM), each at a different one of a plurality of different frequencies, a plurality of noise detection circuits (231-23M), each for processing a respective one of the plurality of subband signals to provide a component of the common mode noise estimate signal, and a synthesis filter bank (24) for processing the common mode noise signal components to provide the noise estimate signal.
Owner:BELL CANADA

Method for estimating pulse noise in OFDM (Orthogonal Frequency Domain Multiplexing) underwater acoustic communication system

The invention discloses a method for estimating pulse noise in an OFDM (Orthogonal Frequency Domain Multiplexing) underwater acoustic communication system. At a receiving end, sparse estimation is performed on pulse noise on an OFDM signal in an underwater acoustic channel transmission process according to a frequency domain signal subjected to redundant Doppler frequency shift compensation, and frequency offset compensation is performed on the frequency domain signal subjected to the redundant Doppler frequency shift compensation with void subcarriers. Under the consideration of mutual interference between the pulse noise and a carrier frequency offset in underwater acoustic communication, compensation of the carrier frequency offset is added in an iteration process while the pulse noise is estimated with all subcarriers and a posteriori distribution under a framework of conventional sparse Bayesian learning, and the frequency domain signal subjected to the redundant Doppler frequency shift compensation and a measurement diagonal matrix for estimating the pulse noise are updated continuously in order to lower influences between the two types of interference. Moreover, the pulse noise is estimated by full utilization of all the subcarriers in the method, so that the spectrum efficiency and the performance of the communication system are improved.
Owner:云南保利天同水下装备科技有限公司

Traditional Chinese medicinal material microscopic image noise filtering system and method adopting pulse coupling neural network

InactiveCN104732500AImprove quality inspectionEasy to identifyImage enhancementPattern recognitionMicroscopic image
The invention discloses a traditional Chinese medicinal material microscopic image noise filtering system and method adopting a pulse coupling neural network. A pulse coupling neural network model suitable for processing tissue image information is adopted for detecting traditional Chinese medicinal material microscopic images. When small-density pulse noise pollution happens to the traditional Chinese medicinal material microscopic images, adaptive weighted filtering processing is carried out; when large-density pulse noise pollution happens to the traditional Chinese medicinal material microscopic images, the introduction dual-structure element mathematical morphology with edge detailed information kept is adopted for secondary filtering. Earlier foundations are laid for further improving quality testing, recognition and identification of traditional Chinese medicinal materials; higher noisy point detection performance is achieved, the noise fallout ratio and omission ratio are low, and the noise detection precision is high; detection time is short, and automatism is high; noise is removed, meanwhile, noise interference can be effectively filtered out, and image edge details and other information can be protected well.
Owner:TIANSHUI NORMAL UNIV

Receiver and method of receiving

A receiver recovers data from Orthogonal Frequency Division Multiplexed (OFDM) symbols, the OFDM symbols including sub-carrier symbols carrying data symbols and sub-carrier signals carrying pilot symbols. The receiver includes a Fourier transform processor arranged in operation to receive a time domain digital version of the OFDM symbols and to form a frequency domain version of the OFDM symbols, from which the pilot symbol sub-carriers and the data symbol bearing sub-carriers can be recovered, and a detector arranged in operation to recover the data symbols from the data bearing sub-carriers of the OFDM symbols. The receiver includes a noise estimator arranged in operation to generate a long term estimate of noise power in the frequency domain version of the OFDM symbols at a plurality of frequencies, by accumulating an average noise power at the plurality of frequencies from a plurality of the OFDM symbols, and for generating an estimate of a current level of the noise power in the frequency domain version of a current one of the OFDM symbols at the plurality of frequencies. An impulsive noise detector detects the presence of an impulse of noise in the current OFDM symbol, by comparing the noise power in the current OFDM symbol with the long term noise power at the plurality of frequencies, and to generate an impulse noise flag to indicate that the current OFDM symbol is affected by an impulse of noise if the comparison indicates the presence of an impulse of noise. Impulsive noise in the time domain will generate an increase in noise level across the frequency bandwidth of the OFDM symbols. If all frequencies experience an increase then an impulse of noise can be detected. Thereafter the detector can conceal the effect of the impulse noise on the recovering of the data symbols from the data bearing sub-carriers, for example by adapting channel state information for use in de-mapping modulated symbols into data symbols.
Owner:SONY CORP

Timing synchronization method and system for power line carrier communication

The invention provides a timing synchronization method and a timing synchronization system for power line carrier communication. The system comprises an analog-to-digital converter, an I/O (Input/Output) demodulator, a narrowband interference detector, an adaptive filter, a normalization module, an auto-correlation calculation module, a comparator and a postprocessor, wherein an OFDM (Orthogonal Frequency Division Multiplexing) carrier signal is converted into an OFDM carrier frequency domain signal by the analog-to-digital converter, the I/O demodulator and the narrowband interference detector. The method comprises the following steps: 1, acquiring average power P of each OFDM subcarrier f; 2, performing narrowband interference detection on the OFDM subcarrier f; 3, filtering the OFDM signal and then performing normalization processing; 4, acquiring start time of the OFDM carrier signal and outputting an OFDM carrier synchronization signal. Compared with the prior art, the timing synchronization method and the timing synchronization system for power line carrier communication have the advantage of higher robustness under various different channel environments of narrowband interference, pulse noise, multi-path propagation and violent change or nonlinear input signal amplitude.
Owner:STATE GRID CORP OF CHINA +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products