Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

294results about "Unbalanced current interference reduction" patented technology

Suppression of radio frequency interference and impulse noise in communications channels

A noise suppression circuit for a communications channel (10) comprises a hybrid device (11) coupled to the channel for providing a differential output signal corresponding to a received signal. A delay unit (12) delays the differential signal by a suitable amount to allow for the generation and subtraction of a noise estimate. A summing device (13) extracts a digital common mode signal from the channel, and a noise estimation unit (16) provides a common mode noise estimate signal in dependence upon a history of the common mode signal over a predetermined period of time and over a plurality of frequency bands. The common mode noise estimate signal is combined subtractively (19) with the delayed differential signal to cancel common mode noise elements of the delayed differential signal. The noise estimation unit may comprise an analysis filter bank (20) for producing a plurality of subband signals (S1-SM), each at a different one of a plurality of different frequencies, a plurality of noise detection circuits (231-23M), each for processing a respective one of the plurality of subband signals to provide a component of the common mode noise estimate signal, and a synthesis filter bank (24) for processing the common mode noise signal components to provide the noise estimate signal.
Owner:BELL CANADA

System and method of allocating bandwidth to a plurality of devices interconnected by a plurality of point-to-point communication links

A method is provided for fairly allocating bandwidth to a plurality of devices connected to a communication link implemented as a plurality of point-to-point links. The point-to-point links interconnect the devices in a daisy chain fashion. Each device is configured to transmit locally generated packets and to forward packets received from downstream devices onto one of the point-to-point links. The rate at which each device transmits local packets relative to forwarding received packets is referred to as the device's insertion rate. A fair bandwidth allocation algorithm is implemented in each (upstream) device to determine the highest packet issue rate of the devices which are downstream of that (upstream) device. The packet issue rate of a downstream device is the number of local packets associated with the downstream device that are received at the upstream device relative to the total number of packets received at the upstream device. By monitoring the total flow of packets received at the upstream device, the highest packet issue rate of the respective packet issue rates of the downstream devices may be determined. Each upstream device then matches its insertion rate to the highest packet issue rate of its downstream devices. The determination of the highest packet issue rate may be performed dynamically such that the insertion rate of the upstream device can adapt to changes in communication traffic patterns. Further, the fair bandwidth allocation algorithm may include a priority algorithm to arbitrate between local and received packets transmitted at the insertion rate.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products