Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

981 results about "Noise estimation" patented technology

Leader sequence detection method and device for random access channel

The invention discloses a leader sequence detection method and a device for a random access channel. The method comprises the following steps that: sub carrier waves of a leader sequence are extracted, the related operation is carried out with the corresponding local root sequence mask in the frequency domain to obtain the time domain channel power time delay spectrum power delay profile (PDP); the noise estimation is carried out on the PDP to obtain the noise estimation value; the width and an initial position of a detection window are calculated; the peak searching is carried out on the determined current detection window; the signal-to-noise calculation is carried out according to the searched peak and the noise estimation value to obtain the corresponding signal-to-noise ratio; and the signal-to-noise ratio and the judgment threshold are compared, and the detected leader sequence is determined in the current detection window when the signal-to-noise ratio is greater than the judgment threshold. The leader sequence detection method the device have the advantages that the simplification processing is respectively carried out on the relative operation, noise estimation and signal-to-noise ratio operation processes in the detection process, so the goals of reducing the operation quantity in the leader sequence detection process and reducing the processing complexity are realized.
Owner:WUHAN HONGXIN TELECOMM TECH CO LTD

Expressway audio vehicle detection device and method thereof

The invention relates to an expressway audio vehicle detection device and a method thereof. By the aid of the detection device, a microphone array signal acquisition module acquires an audio signal on a lane, the audio signal is subjected to band-splitting filtering and framing through a signal processing module after being subjected to de-noising processing through a noise suppression module, cross-correlation processing is conducted among sub-band signals, an audio space spectrogram is obtained, a vehicle detection module tracks a track of the maximum value on the audio space spectrogram and judges whether a vehicle passes, and the vehicle type and the vehicle speed are obtained through a vehicle type recognition module and a vehicle speed recognition module if the vehicle passes. The detection method is based on the device, a minimum statistical noise estimation method of the adaptive window length is adopted, the signal which is subjected to noise suppression processing is subjected to band-splitting filtering and framing processing, then cross-correlation processing is conducted among same sub-band signals, cross-correlation results are summed after being subjected to amplitude compression and are unfolded along a timer shaft, and an audio signal space-time spectrum is obtained. The method and the device have the advantages of being low in cost, low in energy consumption,easy to construct, interference resisting, capable of working in all weather and the like.
Owner:TAIKE HIGHWAY SCI & TECH INST BEIJING CITY +1

System and method for providing an accurate estimation of received signal interference for use in wireless communications systems

A system for providing an accurate interference value signal received over a channel and transmitted by an external transceiver. The system includes a first receiver section for receiving the signal, which has a desired signal component and an interference component. A signal extracting circuit extracts an estimate of the desired signal component from the received signal. A noise estimation circuit provides the accurate interference value based on the estimate of the desired signal component and the received signal. A look-up table transforms the accurate noise and/or interference value to a normalization factor. A carrier signal-to interference ratio circuit employs the normalization factor and the received signal to compute an accurate carrier signal-to-interference ratio estimate. Path-combining circuitry generates optimal path-combining weights based on the received signal and the normalization factor. In the illustrative embodiment, the system further includes a circuit for employing the accurate interference value to compute a carrier signal-to-interference ratio. An optimal path-combining circuit computes optimal path-combining weights for multiple signal paths comprising the signal using the accurate interference value and provides optimally combined signal paths in response thereto. A log-likelihood ratio circuit computes a log-likelihood value based on the carrier signal-to-interference ratio and the optimally combined signal paths. A decoder decodes the received signal using the log-likelihood value. An additional circuit generates a rate and/or power control message and transmits the rate and/or power control message to the external transceiver.
Owner:QUALCOMM INC

Method and apparatus for reducing noise in speech and audio signals

A method and apparatus are disclosed for enhancing, within a signal bandwidth, a corrupted audio-frequency signal. The signal which is to be enhanced is analyzed into plural sub-band signals, each occupying a frequency sub-band smaller than the signal bandwidth. A respective signal gain function is applied to each sub-band signal, and the respective sub-band signals are then synthesized into an enhanced signal of the signal bandwidth. The signal gain function is derived, in part, by measuring speech energy and noise energy, and from these determining a relative amount of speech energy, within the corresponding sub-band. In certain embodiments of the invention, the signal gain function is also derived, in part, by determining a relative amount of speech energy within a frequency range greater than, but centered on, the corresponding sub-band. In other embodiments of the invention, the sub-band noise energy is determined from a noise estimate that is updated at periodic intervals, but is not updated if the newest sample of the signal to be enhanced exceeds the current noise estimate by a multiplicative threshold (i.e., a threshold expressible in decibels). In still other embodiments of the invention, the value of the noise estimate is limited by an upper bound that is matched to the dynamic range of the signal to be enhanced.
Owner:INTEL CORP

Accurate target detection system

An accurate target detection system. The system includes a sensor (22) that receives electromagnetic signals and provides electrical signals in response thereto. A non-uniformity correction circuit (28, 38, 52) corrects non-uniformities in the sensor (22) based on the electrical signals and provides calibrated electrical signals in response thereto. A third circuit (30, 32, 34, 38, 42, 44, 52) determines if a target signal is present within the calibrated electrical signals and provides a target detection signal in response thereto. A fourth circuit (38, 40, 48) selectively activates or deactivates the non-uniformity correction circuit (28, 38, 52) based on the target detection signal. In a specific embodiment, the sensor (22) is an array of electromagnetic energy detectors (22), each detector providing an electrical detector output signal The non-uniformity correction circuit (28, 38, and 52) includes circuit for compensating for gain, background, and noise non-uniformities (28, 38, and 52) in the electromagnetic energy detectors. The non-uniformity correction circuit (28, 38, and 52) includes a detector gain term memory (28) for storing detector gain compensation values. The detector gain compensation values are normalized by noise estimates unique to each of the detectors. The third circuit (30, 32, 34, 38, 42, 44, and 52) includes a signal enhancement circuit for reducing noise (34, 42) in the calibrated electrical signals. The third circuit (30, 32, 34, 38, 42, 44, and 52) includes a noise estimation circuit (32, 38) that estimates noise in each of the detector output signals and provides noise estimates in response thereto. The noise estimation circuit (32, 38) further includes a noise estimator circuit (38) and a recursive background estimator (32). The third circuit (30, 32, 34, 38, 42, 44, 52) further includes a subtractor (30) for subtracting background from the calibrated electrical signals and providing background subtracted signals in response thereto. The signal enhancement circuit (34, 42) includes a frame integrator circuit for adding frames of image data (34), each frame containing data corresponding to the background subtracted signals and providing summed frames in response thereto. The third circuit (30, 32, 34, 38, 42, 44, 52) includes a first threshold circuit (44) for comparing the filtered signal to a first threshold and a second threshold and providing a threshold exceedance signal if the filtered signal is between the first threshold and the second threshold.
Owner:RAYTHEON CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products