Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

121 results about "Temporal noise" patented technology

Temporal noise is random noise that varies independently from image to image, in contrast to fixed-pattern noise, which remains consistent (but may be difficult to measure because it is usually much weaker than temporal noise).

Adaptive non-uniformity compensation using feedforward shunting and min-mean filter

A system and method adapted for use with a focal plane array of electromagnetic energy detectors to receive first and second frames of image data from electromagnetic energy received from at least a portion of a scene. The first frame is a focused frame and the second frame is a blurred frame. In a feed-forward path the system compares the first frame to the second frame and provides an error signal in response thereto. In a main path, the system multiplies at least a portion of the second frame of image data with the error signal to provide an noise error corrected output signal. In the preferred embodiment, the error signal is scaled prior to being multiplied by the second frame. A min-mean filter is provided to remove dome shading effects from the frames of image data. In the best mode, the min-mean filter is disposed in the main path and blurred and focused outputs therefrom are weighted, averaged and stored. The weighted, averaged and stored focused frames are compared to the weighted, averaged and stored blurred frames to provide a fixed pattern noise error signal. A temporal noise error signal is identified from the weighted, averaged and stored focused frames. The fixed pattern and temporal noise error signals are fed forward and shunted from a current frame using multiplication or division. Thereafter, a constant mean value may be added to provide the output signal. Pixel replacement is consolidated into a single circuit and positioned prior to the min-mean filter.
Owner:RAYTHEON CO

Adaptive non-uniformity compensation using feedforward shunting and wavelet filter

A system and method adapted for use with a focal plane array of electromagnetic energy detectors to receive first and second frames of image data from electromagnetic energy received from at least a portion of a scene. The first frame is a focused frame and the second frame is a blurred frame. In a feed-forward path the system compares the first frame to the second frame and provides an error signal in response thereto. In a main path, the system multiplies at least a portion of the second frame of image data with the error signal to provide a noise error corrected output signal. In the preferred embodiment, a wavelet filter is used to remove dome shading effects from the frames of image data. In the best mode, the wavelet filter is disposed in the main path and blurred and focused outputs therefrom are weighted, averaged and stored. Coefficients from the weighted, averaged and stored focused frames are compared to coefficients from the weighted, averaged and stored blurred frames to provide a fixed pattern noise error signal. A temporal noise error signal is identified from the weighted, averaged and stored focused frames. The fixed pattern noise error signal and the temporal noise error signals are sparse processed and shunted from a current frame. Thereafter, a constant mean value may be added to provide the output signal. Pixel replacement can be consolidated into a single circuit and positioned prior to the wavelet filter.
Owner:RAYTHEON CO

Adaptive non-uniformity compensation using feedforwarding shunting

A system and method adapted for use with a focal plane array of electromagnetic energy detectors to receive first and second frames of image data from electromagnetic energy received from at least a portion of a scene. The first frame is a focused frame and the second frame is an unfocused frame. In a feed-forward path the system compares the first frame to the second frame and provides an error signal in response thereto. In a main path, the system multiplies at least a portion of the second frame of image data with the error signal to provide an noise error corrected output signal. In the preferred embodiment, the error signal is scaled prior to being multiplied by the second frame. An anti-mean (high pass) filter is provided to remove dome shading effects from the frames of image data. In the best mode, the anti-mean filter is disposed in the main path and blurred and focused outputs therefrom are weighted, averaged and stored. The weighted, averaged and stored focused frames are compared to the weighted, averaged and stored blurred frames to provide a fixed pattern noise error signal. A temporal noise error signal is identified from the weighted, averaged and stored focused frames. The fixed pattern and temporal noise error signals are fed forward and shunted from a current frame using multiplication or division. Thereafter, a constant mean value may be added to provide the output signal. Pixel replacement is consolidated into a single circuit and positioned prior to the anti-mean filter.
Owner:RAYTHEON CO

Noise reduction pre-preocessor for digital video using previously generated motion vecotrs and adaptive spatial filering

Noise is reduced in a video system by applying motion compensated temporal filtering using previously generated motion vectors and adaptive spatial filtering at scene change frames. Various types of noise can be introduced into video prior to compression and transmission. Artifacts arise from recording and signal manipulation, terrestrial or orbital communications, or during decoding. Noise introduced prior to image compression interferes with performance and subsequently impairs system performance. While filtering generally reduces noise in a video image, it can also reduce edge definition leading to loss of focus. Filtering can also tax system throughput, since increased computational complexity often results from filtering schemes. Furthermore, the movement of objects within frames, as defined by groups of pixels, complicates the noise reduction process by adding additional complexity. In addition to improvements made to FIR spatial filtering, the present invention improves on previous filtering techniques by using Infinite Impulse Response (IIR) temporal filtering to reduce noise while maintaining edge definition. It also uses motion vectors previously calculated as part of the first-pass image encoding or alternatively by trans coding to reduce computational complexity for P-frame and B-frame image preprocessing. Single stage P-frame temporal noise filtering and double stage B-frame temporal noise filtering are presented.
Owner:GENERAL INSTR CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products