Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

970 results about "Reciprocating pump" patented technology

A reciprocating pump is a class of positive-displacement pumps which includes the piston pump, plunger pump and diaphragm pump. When well maintained, reciprocating pumps will last for years or even decades; however, left untouched, they can undergo rigorous wear and tear. It is often used where a relatively small quantity of liquid is to be handled and where delivery pressure is quite large. In reciprocating pumps, the chamber in which the liquid is trapped is a stationary cylinder that contains the piston or Plunger.

Reciprocating pump assembly

A reciprocating pump assembly having a power end housing and a fluid end housing and a cylinder having at least a portion within the power end. A plunger assembly reciprocates between the power end housing and the fluid end housing of the pump assembly, the plunger assembly having a crosshead, a first section limited to movement within the power end and a second section moveable within the fluid end housing. The pump assembly also includes a seal housing disposed within the cylinder, the seal housing having a proximal end adjacent an entrance to the cylinder, and a distal end disposed within the cylinder. A power end seal is secured to the seal housing proximate the distal end and a fluid end seal is disposed within the fluid end housing. The power end seal sealingly engages an outer surface of the first section and the fluid end seal sealingly engages an outer surface of the second section such that during the reciprocating movement of the plunger assembly, fluid end proppant is deterred from contaminating the outer surface of the first section and thus, contaminating the power end seal.
Owner:SPM OIL & GAS INC

Reciprocating pump cavitation detection and avoidance

Systems and methods for detecting cavitation in a reciprocating positive displacement pump. Fluid pressure proximate the pump's suction manifold is compared to a predetermined pressure that would be conducive to cavitation. If the detected pressure approximates the predetermined pressure, the presence of cavitation is confirmed via correlation of increased vibration.
Owner:BJ ENERGY SOLUTIONS LLC FORMERLY TES ASSET ACQUISITION LLC

Reciprocating pump with dual circuit power end lubrication system

A dual circuit lubrication system for a power end of a reciprocating pump that includes a lubrication pump that supplies lubrication fluid to a high pressure lubrication circuit and a low pressure lubrication circuit. The high pressure lubrication circuit is fluidly coupled to a crankshaft to supply lubrication fluid to journal surfaces associated with the crankshaft at a first lubrication fluid pressure. The crankshaft drives a crosshead coupled to a plunger to displace fluid from a fluid end of the reciprocating pump. The low pressure lubrication circuit is fluidly coupled to supply the lubrication fluid to a plurality of roller bearing surfaces associated with the crankshaft at a second lubrication fluid pressure. The first lubrication fluid pressure is greater than the second lubrication fluid pressure.
Owner:SPM OIL & GAS INC

Readily Removable Pump Crosshead

A reciprocating pump has a driven crankshaft and a connecting rod having an aft end rotatably mounted to the crankshaft. The pump has a stationarily mounted crosshead case in which a crosshead assembly strokes. The crosshead assembly has first and second crosshead members. A retainer pivotally joins the forward end of the connecting rod to the first crosshead member. The second crosshead member has a partially cylindrical recess containing a bushing. The forward end of the connecting rod is in pivotal engagement with the bushing. The second crosshead member is releasably secured to the first crosshead member to allow removal of the second crosshead member and the bushing from the crosshead case without detaching the forward end of the connecting rod from the first crosshead member.
Owner:WEIR SPM

Reciprocating pump with dual circuit power end lubrication system

A dual circuit lubrication system for a power end of a reciprocating pump that includes a lubrication pump that supplies lubrication fluid to a high pressure lubrication circuit and a low pressure lubrication circuit. The high pressure lubrication circuit is fluidly coupled to a crankshaft to supply lubrication fluid to sliding surfaces associated with the crankshaft at a first lubrication fluid pressure. The crankshaft drives a crosshead coupled to a plunger to displace fluid from a fluid end of the reciprocating pump. The low pressure lubrication circuit is fluidly coupled to supply the lubrication fluid to a plurality of rolling surfaces associated with the crankshaft at a second lubrication fluid pressure. The first lubrication fluid pressure is greater than the second lubrication fluid pressure.
Owner:SPM OIL & GAS INC

Interventional procedure drive and control system

A pumping system for use in medical applications where liquids must be infused and aspirated from a mammalian patient, and whose economics are such that it is cost effective to simply dispose of it after a single use. The system features positive displacement pump(s) such as reciprocating pump(s) containing a damping mechanism to dampen out the peaks and valleys in the fluid pressure that is pumped, which is important for preventing cavitation. The system furthermore features a shut-off valve on the extraction side so that certain injected fluids such as contrast medium, are not immediately pumped out of the patient. In a preferred embodiment, the system also features means for independently controlling the fluid pressure / volume on the infusion and extraction sides, self-priming capability, a continuous fluid path, and visual air bubble detection, with viewports located at important points in the fluid path, such as at pumps and valves.
Owner:KENSEY NASH CORP

High pressure pump system for supplying a cryogenic fluid from a storage tank

A medium and high pressure pump systems supplies a cryogenic fluid from a storage tank. The system comprises a pump that is operable to pump cryogenic liquid or a mixture of cryogenic liquid and vapor. The pump preferably comprises an inducer with at least two chambers and means for recycling excess fluid within the inducer instead of returning excess fluid to the storage tank. The reciprocating pump is preferably double acting such that fluid is discharged from the pump during both extension and retraction strokes.
Owner:WESTPORT POWER

Magnetic heat pump system and air-conditioning system using that system

A magnetic heat pump system which arranges permanent magnets at the two sides of a magnetocalorific effect material to thereby strengthen the magnetic field to improve the cooling and heating ability, which magnetic heat pump system uses first and second magnets which move inside and outside of the containers in the state facing each other to change a magnitude of a magnetic field which is applied to a plurality of containers in which a magnetocalorific effect material is stored so as to change a temperature of a heat transport medium which is made to flow through the containers by a reciprocating pump, the intensity of the magnetic field which is applied to the magnetocalorific effect material in the containers being increased to enlarge the change of temperature of the heat transport medium which is discharged from the magnetic heat pump and improve the cooling and heating efficiency.
Owner:DENSO CORP

Variable displacement reciprocating pump

ActiveUS20070041849A1Limited horsepowerCam-followersPump controlAutomatic controlDrive shaft
A variable displacement reciprocating pump with pumping rate that is adjustable from zero to maximum stroke while the pump is running. Stroke is varied by changing relative position of pairs of eccentric inner and outer cams that drive the pump's plungers. The pump's input drive shaft drives two gear trains: a first gear train that turns the inner cams and a second gear train that turns the outer cams. These cams normally revolve together with no relative motion occurring between them. A rotary actuator is positioned in the first gear train to rotate the inner cams relative to the outer cams and thereby changes the pump's stroke. A computerized system of sensors and control valves allows the pump to be automatically controlled or limited to any one or combination of desired output flow, pressure and horsepower.
Owner:SERVA CORP

Valve Seat Installation and Retrieval Tool

A tool for replacing a valve seat of a reciprocating pump has a puller shaft connected to a puller head having at least two spring-biased dogs. An operator inserts the puller head into a valve bore and through a valve seat, the dogs retracting as the puller head moves through the valve seat, then snapping back outward. A hydraulic cylinder engages the puller shaft to exert a force on the puller shaft causing the dogs to dislodge the seat. The operator then places a replacement valve seat on a shoulder in the valve bore. The operator attaches an installing head to an installing shaft and inserts the installing head into the valve bore into contact with the replacement valve seat. The hydraulic cylinder applies a force in an opposite direction on the installing shaft to push the replacement valve seat into installed engagement.
Owner:WEIR SPM

Patient controlled drug administration device

ActiveUS6936035B2Without manipulationSafely self-administer the drugPressure infusionDetentEngineering
A patient controlled liquid drug administration device comprises a reciprocating pump having an inlet connectable to a source of a pressurized liquid drug, and an outlet connectable to the patient. A clamp rotates between closed and open positions respectively blocking and enabling pump outflow. A plunger above the pump has an end contacting a movable wall of the pump and is movable between raised and lowered positions. A button above the plunger moves between extended and depressed positions, and has a ledge that engages the clamp when the button is moved to the depressed position and moves the clamp to its open position. A compression spring is disposed between the plunger and the button. A spring catch engages a detent in the button when the button is moved to its depressed position and holds the button there until released by a catch release on the plunger that disengages the spring catch from the detent in the button when the plunger is moved to its lowered position. A removable tab permits easy, rapid priming of the pump by holding the clamp in its open position regardless of the position of the button, and by holding the button in its depressed position regardless of the position of the plunger.
Owner:AVENT INC

Support for Reciprocating Pump

A gearbox is coupled to a power end housing of a reciprocating pump, where the gearbox includes at least one support member having a first end securely affixed to the gearbox, and the at least one support member having a second end securely affixed to an immobile part of the reciprocating pump for supporting the gearbox and resisting movement of the gearbox relative to the reciprocating pump.
Owner:SPM OIL & GAS INC

Fluid end for a plunger pump

A fluid end for a reciprocating pump including a body having a base, a side and a longitudinal opposing side, a cylinder bore formed horizontally through the body and a vertical bore intersecting the cylinder bore defining a high stress region proximate the intersection, and a tension member extending through the body substantially parallel to the longitudinal axis of the body, wherein the tension member provides a compressive load on the body reducing the stresses encountered in the region during operation of the fluid end.
Owner:DIXIE IRON WORKS

Valve for Reciprocating Pump Assembly

The valve member includes a valve body and a seal. The valve body defines a first frusto-conical surface and an outside annular cavity. The seal extends within the outside annular cavity and includes a first tapered and circumferentially-extending surface adapted to sealingly engage the tapered surface of the valve seat. In another aspect, the seal includes an annular bulbous protrusion from which the first tapered and circumferentially-extending surface angularly extends, the first tapered and circumferentially-extending surface extending between the annular bulbous protrusion and the first frusto-conical surface of the valve body. In another aspect, an offset distance is defined between the first frusto-conical surface of the valve body and at least a portion of the first tapered and circumferentially-extending surface of the seal, the offset distance extending in a direction that is perpendicular to at least the first frusto-conical surface of the valve body.
Owner:SPM OIL & GAS INC

Reciprocating fluid pump assembly employing reversing polarity motor

A reciprocating pump includes a drive section and a pump section. The drive section has a reciprocating coil assembly to which alternating polarity control signals are applied during operation. A permanent magnet structure of the drive section creates a magnetic flux field which interacts with an electromagnetic field produced during application of the control signals to the coil. Depending upon the polarity of the control signals applied to the coil, the coil is driven in one of two directions of movement. A drive member transfers movement of the coil to a pump element which reciprocates with the coil to draw fluid into a pump chamber and expel the fluid during each pump cycle. The pump is particularly well suited to cyclic pumping applications, such as fuel injection systems for internal combustion engines.
Owner:BRP US

Reciprocating pump performance prediction

Performance parameters for a reciprocating pump including pulsation energy, temperature energy, solids, Miller number and chemical energy and the like are monitored and employed to at least periodically compute a total energy number over the operating life of the pump. The current computed value is compared to a predictive failure value empirically determined for the respective pump design, to determine when failure is likely to be imminent. Scheduling of maintenance with other pumping operations and objective rating of competing designs is possible based on the total energy number.
Owner:PERFORMANCE PULSATION CONTROL

Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump

ActiveUS11015594B2Reduce and eliminate shock loadingDampen torsional resonanceRotating vibration suppressionSpringsRotary pumpClassical mechanics
A pump system may include a pump, a driveshaft, driving equipment, and a vibration dampening assembly configured to reduce pump-imposed high frequency / low amplitude and low frequency / high amplitude torsional vibrations. The pump may have an input shaft connected to the driveshaft. The driving equipment may include an output shaft having an output flange connected to the driveshaft. The driving equipment may be configured to rotate the driveshaft to rotate the input shaft of the pump therewith. The vibration dampening assembly may include one or more flywheels operably connected to the input shaft and configured to rotate therewith.
Owner:BJ ENERGY SOLUTIONS LLC

System and method for reinforcing reciprocating pump

A drive system for a fluid end of a reciprocating pump assembly including a drive member and a power end housing having a crankshaft rotatably disposed therein. The assembly includes a gearbox secured to the power end housing, the gearbox operatively connecting the drive member to the crankshaft for rotation thereof. The assembly further includes at least one arm member extending between the gearbox and the power end housing, the at least one arm member positioned to resist relative movement between the gearbox and the power end housing.
Owner:SPM OIL & GAS INC

Offset valve bore in a reciprocating pump

A fluid end 15 for a multiple reciprocating pump assembly 12 comprises at least three plunger bores 61 or 91 each for receiving a reciprocating plunger 35, each plunger bore having a plunger bore axis 65 or 95. Plunger bores being arranged across the fluid head to define a central plunger bore and lateral plunger bores located on either side of the central plunger bore. Fluid end 15 has suction valve bores 59 or 89, each suction valve bore receiving a suction valve 41 and having a suction valve bore axis 63 or 93. Discharge valve bores 57 or 87, each discharge valve bore receiving a discharge valve 43 and having a discharge valve bore axis 63 or 93. The axes of at least one of suction and discharge valve bores is inwardly offset in the fluid end from its respective plunger bore axis.
Owner:S P M FLOW CONTROL

Reciprocating pump with intersecting bore geometry

A reciprocating pump housing having a suction valve bore, a discharge valve bore, a plunger bore and an access bore. The suction and discharge bores are disposed on a first centerline and the plunger and access bores are disposed along a second centerline perpendicular to the first centerline. The pump housing includes a first annular transition zone extending between an intersection of the plunger bore and suction bore and an intersection of the access bore and the discharge valve bore. The housing also includes a second annular transition zone extending between an intersection of the suction valve bore and access bore and an intersection of the plunger bore and discharge valve bore. The first and second transition zones intersect along a third centerline perpendicular to the intersection of first and second centerlines, each including a curvature along their lengths to blend the intersections between the bores and reduce tensile stresses.
Owner:S P M FLOW CONTROL

Barrier fluid seal, reciprocating pump and operating method

A barrier fluid seal assembly is provided for a reciprocating rod, where the reciprocation of the rod is used to pump barrier fluid through a barrier fluid chamber. The rod has first and second seals, and the barrier fluid chamber is located between the seals. Barrier fluid pressure is maintained higher than process fluid pressure so that if there is leakage past the seals, then it is barrier fluid that leaks, which keeps the seals clean and flushed. A reciprocating pump may incorporate the barrier fluid seal assembly for sealing around a plunger. A method of operating first and second reciprocating pumping cylinders provides bumpless transfer of pumping from one pumping cylinder to the other pumping cylinder. Motion controls, such as a controller using a position transducer for a hydraulic piston and a servo-valve for providing hydraulic fluid to the hydraulic piston, are used to compress liquid process fluid in one pumping cylinder prior to beginning its pumping stroke. A total plunger speed is determined for plungers in pumping cylinders A and B, and total plunger speed is held essentially constant prior to hand-off of pumping from one pumping cylinder to another pumping cylinder. The speed of one plunger is increased before it enters its pumping stroke while the speed of the other plunger is decreased an equal amount as it reaches the end of its pumping stroke.
Owner:TEXAS PRESSURE SYST

Manifold assembly for reciprocating pump

A cylinder block assembly for a reciprocating pump includes a block body having a piston chamber that receives a piston of the reciprocating pump. The cylinder block assembly has an outlet valve assembly positioned within the block body that is positioned in fluid communication with the piston chamber. An outlet valve retainer retains the outlet valve relative to the piston chamber. The cylinder block assembly includes an inlet valve assembly extending through a side of the block body to the piston chamber. An inlet valve retainer also retains the inlet valve assembly relative to the piston chamber. A discharge passage extends from the outlet valve assembly to another side of the block body. A portion of the discharge passage extends between the inlet valve assembly and the inlet valve retainer.
Owner:S P M FLOW CONTROL

Apparatus and method

The present invention includes methods and apparatuses to pump fluids from a well bore using a hydraulically actuated reciprocating pump to pump fluids from a well to the surface. In one embodiment the weight of the pumped fluid is utilised to return the piston in one direction and preferably the pressure within the well is utilised to urge the piston in the opposite direction thus reducing the amount of force required to reciprocate the piston and consequently reducing the amount of power required to operate the pump.
Owner:THAINSTONE ENERGY

Apparatus for analysis and control of a reciprocating pump system by determination of a pump card

An instrumentation system for assessing operation of a reciprocating pump system which produces hydrocarbons from a non-vertical or a vertical wellbore. The instrumentation system periodically produces a downhole pump card as a function of a directly or indirectly measured surface card and a friction law function from a wave equation which describes the linear vibrations in a long slender rod. A control signal or command signal is generated based on characteristics of the downhole pump card for controlling the pumping system. It also generates a pump and well analysis report that is useful for a pump operation and determination of its condition.
Owner:RAVDOS HLDG INC

High pressure pump piston

InactiveUS6957605B1Easy maintenanceReduce the force per unit areaEngine sealsPiston ringsElastomerEngineering
A high pressure piston for use within a liner for a reciprocating pump comprises an elastomeric seal and a metallic annular bearing ring having relatively high heat conductivity compared to the liner and seal. During the pump's pressure stroke a portion of the bearing ring elastically expands radially to narrow or close the extrusion gap. Narrowing the gap decreases the tendency for extrusion of piston seal elastomeric material, while closing the gap tends to block elastomer extrusion and establish sliding contact between the bearing ring and the liner. Sliding contact between the bearing ring and liner prevents portions of the piston hub (e.g., a transverse flange) from contacting the liner and damaging it. The heat-conductive bearing ring improves scavenging of frictional heat near the extrusion gap, extending the service life of piston seal elastomer while reducing bearing ring and liner wear. Under reduced pressure on the pump's return stroke, the bearing ring elastically contracts radially, slightly widening the extrusion gap. On the pump's return stroke the slightly wider extrusion gap allows cooling water directed generally toward the proximal flange of the piston hub to better cleanse, as well as cool, the liner wall.
Owner:NOVATECH HLDG CORP

Pump drivetrain damper system and control systems and methods for same

In one aspect, there is provided a damper control system for a reciprocating pump assembly according to which control signals are sent to electromagnets. In another aspect, there is provided a method of dampening vibrations in a pump drivetrain according to which a beginning of torque variation is detected and at least a portion of the torque variation is negated. In another aspect, signals or data associated with pump characteristics are received from sensors, torque characteristics and damper response voltages per degree of crank angle are calculated, and control signals are sent to electromagnets. In another aspect, a damper system includes a fluid chamber configured to receive a magnetorheological fluid; a flywheel disposed at least partially within the fluid chamber and adapted to be operably coupled to a fluid pump crankshaft; and a magnetic device proximate the flywheel. The magnetic device applies a variable drag force to the flywheel.
Owner:SPM OIL & GAS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products