Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1058 results about "Tensor" patented technology

In mathematics, a tensor is an algebraic object that describes a linear mapping from one set of algebraic objects to another. Objects that tensors may map between include, but are not limited to vectors and scalars, and, recursively, even other tensors (for example, a matrix is a map between vectors, and is thus a tensor. Therefore a linear map between matrices is also a tensor). Tensors are inherently related to vector spaces and their dual spaces, and can take several different forms – for example: a scalar, a tangent vector at a point, a cotangent vector (dual vector) at a point, or a multi-linear map between vector spaces.

Method and apparatus for quantizing and compressing neural network with adjustable quantization bit width

The invention relates to the technical field of neural networks, and specifically provides a method and apparatus for quantifying and compressing a convolutional neural network. The invention aims to solve the existing problem of large loss of network performance caused by an existing method for quantifying and compressing a neural network. The method of the invention comprises the steps of obtaining a weight tensor and an input eigen tensor of an original convolutional neural network; performing fixed-point quantization on the weight tensor and the input eigen tensor based on a preset quantization bit width; and replacing the original weight tensor and the input eigen tensor with the obtained weight fixed-point representation tensor and the input feature fixed-point representation tensor to obtain a new convolutional neural network after quantization and compression of the original convolutional neural network. The method of the invention can flexibly adjust the bit width according to different task requirements and can realize quantization and compression of the convolutional neural network without adjusting the algorithm structure and the network structure so as to reduce the occupation of memory and storage resources. The invention further provides a storage apparatus and a processing apparatus, which have the above beneficial effects.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

Gravity Gradiometer

A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured. A calibration sensor is provided for sensing whether the masses are balanced at room temperature so the balance of the masses can be adjusted by adjustable screws to balance the masses for cryogenic operation of the gradiometer. The calibration sensor comprises a resonant circuit (400, 410) and an oscillator (414). The resonant circuit includes a capacitor (400) which is formed by part of the sensor mass and a space plate (405).
Owner:TECHNOLOGICAL RESOURCES

Multimodal brain network feature fusion method based on multi-task learning

The invention discloses a multimodal brain network feature fusion method based on multi-task learning, and the multimodal brain network feature fusion method based on the multi-task learning includes the steps of preprocessing the obtained functional magnetic resonance imaging (fMRI) images and diffusion tensor imaging (DTI) images, registrating the preprocessed fMRI image to the standard AAL template, carrying out a fiber tracking for preprocessed DTI images, calculating fiber anisotropy (FA) value, and constructing structure connection matrix through the AAL template. Clustering coefficient of each brain area in a function connection matrix and the structure connection matrix is calculated to be regarded as function features and structure features. As two different tasks, the function features and the structure features assess an optimal feature set by solving the problem of multi-task learning optimization. The method uses information with multiple modalities complementing each other to learn simultaneously and to classify, improves the classification accuracy, solves the problems that a single task feature does not consider the correlation between features, and the fact that only one modality feature is used for pattern classification can bring to insufficient amount of information.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products