Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

904results about How to "Accelerated training" patented technology

Interface device and method for interfacing instruments to medical procedure simulation systems

An interface device and method for interfacing instruments to a medical procedure simulation system serve to interface peripherals in the form of mock medical instruments to the medical procedure simulation system computer to enable simulation of medical procedures. The interface device includes a housing having a mock bodily region of interest to facilitate insertion of a mock instrument, such as an endoscope tube, into the interface device. The mock bodily region of interest may be pivotable to simulate various patient orientations. The instrument is engaged by a capture mechanism in order to measure rotational and translational motion of the instrument. An actuator is disposed within the interface device to provide force feedback to the instrument. The measured motion is provided to the computer system to reflect instrument motion on the display during the simulation. Alternatively, the interface device may be configured to accommodate instrument assemblies having a plurality of nested instruments (e.g., sheath, catheter and wire), whereby the interface device individually grasps, measures manipulation of and provides force feedback to the nested instruments. In addition, the interface device may be configured to simultaneously accommodate a plurality of independently inserted instruments.
Owner:IMMERSION MEDICAL

Interface device and method for interfacing instruments to medical procedure simulation systems

An interface device and method for interfacing instruments to a medical procedure simulation system serve to interface peripherals in the form of mock medical instruments to the medical procedure simulation system computer to enable simulation of medical procedures. The interface device includes a housing having a mock bodily region of interest to facilitate insertion of a mock instrument, such as an endoscope tube, into the interface device. The mock bodily region of interest may be pivotable to simulate various patient orientations. The instrument is engaged by a capture mechanism in order to measure rotational and translational motion of the instrument. An actuator is disposed within the interface device to provide force feedback to the instrument. The measured motion is provided to the computer system to reflect instrument motion on the display during the simulation. Alternatively, the interface device may be configured to accommodate instrument assemblies having a plurality of nested instruments (e.g., sheath, catheter and wire), whereby the interface device individually grasps, measures manipulation of and provides force feedback to the nested instruments. In addition, the interface device may be configured to simultaneously accommodate a plurality of independently inserted instruments.
Owner:IMMERSION MEDICAL

Interface device and method for interfacing instruments to vascular access simulation systems

An interface device and method for interfacing instruments to a vascular access simulation system serve to interface peripherals in the form of mock or actual medical instruments to the simulation system to enable simulation of medical procedures. The interface device includes a catheter unit assembly for receiving a catheter needle assembly, and a skin traction mechanism to simulate placing skin in traction or manipulating other anatomical sites for performing a medical procedure. The catheter needle assembly and skin traction mechanism are manipulated by a user during a medical procedure. The catheter unit assembly includes a base, a housing, a bearing assembly and a shaft that receives the catheter needle assembly. The bearing assembly enables translation of the catheter needle assembly, and includes bearings that enable the shaft to translate in accordance with manipulation of the catheter needle assembly. The shaft typically includes an encoder to measure translational motion of a needle of the catheter needle assembly, while the interface device further includes encoders to measure manipulation of the catheter needle assembly in various degrees of freedom (e.g., translation, pitch and yaw) and the skin traction mechanism. Alternatively, the shaft may include an additional encoder to measure translational motion of an instrument inserted through the catheter needle assembly. The simulation system receives measurements from the interface device encoders and updates the simulation and display, while providing control signals to the force feedback device to enable application of force feedback to the catheter needle assembly.
Owner:IMMERSION MEDICAL

Method of managing interference during delay recovery on a train system

InactiveUS6980894B1Minimizing trip timeAvoiding low train voltageSpeed controllerElectric devicesSystem requirementsLow voltage
The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as “Interference During Acceleration”, “Interference Near Station Stops”, and “Interference During Delay Recovery.” Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.
Owner:SAN FRANCISCO BAY AREA RAPID TRANSIT DISTRICT

Interface device and method for interfacing instruments to medical procedure simulation systems

An interface device and method for interfacing instruments to a medical procedure simulation system serve to interface peripherals in the form of mock medical instruments to the medical procedure simulation system computer to enable simulation of medical procedures. The interface device includes a housing having a mock bodily region of interest to facilitate insertion of a mock instrument, such as an endoscope tube, into the interface device. The mock bodily region of interest may be pivotable to simulate various patient orientations. The instrument is engaged by a capture mechanism in order to measure rotational and translational motion of the instrument. An actuator is disposed within the interface device to provide force feedback to the instrument. The measured motion is provided to the computer system to reflect instrument motion on the display during the simulation. Alternatively, the interface device may be configured to accommodate instrument assemblies having a plurality of nested instruments (e.g., sheath, catheter and wire), whereby the interface device individually grasps, measures manipulation of and provides force feedback to the nested instruments. In addition, the interface device may be configured to simultaneously accommodate a plurality of independently inserted instruments.
Owner:IMMERSION MEDICAL

Sewage-disposal soft measurement method on basis of integrated neural network

The invention discloses a sewage-disposal soft measurement method on the basis of an integrated neural network, and belongs to the field of sewage disposal. A sewage disposal process is high in nonlinearity, time-varying characteristics and complexity, and measurement for key water quality indexes is crucially significant in control of water pollution. In order to improve precision of simultaneous soft measurement for various key water quality parameters in a sewage-disposal soft measurement process by the sewage-disposal soft measurement method, an integrated neural network model is provided for measuring COD (chemical oxygen demand) of outlet water, BOD (biochemical oxygen demand) of the outlet water and TN (total nitrogen) of the outlet water, coupling relation between the three key water quality parameters is sufficiently utilized in the model, the integrated neural network model contains three feedforward neural sub-networks, and the various neural sub-networks are trained by particle swarm optimization, so that the optimal structure of each neural sub-network can be obtained. The COD of the outlet water, the BOD of the outlet water and the TN of the outlet water are predicted by the trained neural network finally, and prediction results are accurate.
Owner:BEIJING UNIV OF TECH

Medical image automatic segmentation method based on multi-path attention fusion

ActiveCN111681252AIncrease the number of picturesImprove feature qualityImage enhancementImage analysisNetwork modelData set
The invention belongs to the technical field of medical image processing and computer vision, in particular to a medical image automatic segmentation method based on multi-path attention fusion, whichcomprises the following steps: obtaining a medical image data set, dividing the data set into a training set and a verification set, augmenting images in the training set, and normalizing images of the verification set and the augmented images in the training set; inputting the pictures in the training set into a multi-path attention fusion network model, and outputting under the guidance of a cross entropy loss function to obtain a segmentation result picture; selecting a model with the highest accuracy of the verification set, inputting the test set into a multi-path attention fusion network loading the model, and outputting to obtain a segmentation result graph of the image. According to the method, the problems that in the medical image segmentation process, an existing network cannoteffectively improve the feature quality under different scales through an encoder, interlayer dependence between network low-level structure features and high-level semantic features is difficult tocontrol, and consequently the segmentation result is poor are solved.
Owner:CHONGQING UNIV OF POSTS & TELECOMM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products