Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

327 results about "Gravity gradient" patented technology

Gravity gradient. The gravity gradient is the gradient of the gravitational acceleration vector. It is also the curvature of the gravitational potential (since the acceleration is the gradient of the potential).

Combination inertial sensor based on multi-component atom interferometer and measurement method of combination inertial sensor

The invention discloses a combination inertial sensor based on a multi-component atom interferometer and a measurement method of the combination inertial sensor, and relates to the technical field of inertial measurement through atom interference. The combination inertial sensor comprises a first inertial-moment-sensitive cold atom interferometer, a second inertial-moment-sensitive cold atom interferometer and a vacuum communication cavity, wherein the first inertial-moment-sensitive cold atom interferometer and the second inertial-moment-sensitive cold atom interferometer are the same in structure. The vacuum communication cavity is communicated with an atom interference area of the first inertial-moment-sensitive cold atom interferometer and an atom interference area of the second inertial-moment-sensitive cold atom interferometer in the horizontal direction. According to the measurement method, multi-frequency laser light is used for simultaneously and independently manipulating two types of alkali metal atoms in the same physical unit, wherein the acceleration and the gravity gradient of one type of alkali metal atoms are measured through a three-pulse pi / 2-pi-pi / 2 Raman laser sequence, and the rotating speed of the other type of alkali metal atoms is measured through a four-pulse pi / 2-pi-pi-pi / 2 Raman laser sequence. Synchronous measurement of a plurality of inertial moments is realized through a simplex physical device at the same time, and the combination inertial sensor based on the multi-component atom interferometer and the measurement method of the combination inertial sensor can play an important role in inertial navigation, resource exploration, earthquake monitoring, physical geographical research and other fields.
Owner:WUHAN INST OF PHYSICS & MATHEMATICS CHINESE ACADEMY OF SCI

Gravity Gradiometer

A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured. A calibration sensor is provided for sensing whether the masses are balanced at room temperature so the balance of the masses can be adjusted by adjustable screws to balance the masses for cryogenic operation of the gradiometer. The calibration sensor comprises a resonant circuit (400, 410) and an oscillator (414). The resonant circuit includes a capacitor (400) which is formed by part of the sensor mass and a space plate (405).
Owner:TECHNOLOGICAL RESOURCES

Vertical gravity gradient measuring sensor based on atom interference effect

The invention discloses a vertical gravity gradient measuring sensor based on an atom interference effect, and belongs to the technical field of gravity surveying. The sensor comprises a first unit device (A) and a second unit device (B) of the same structures, and is characterized in that a first vacuum container (1.1) and a second vacuum container (1.2) are connected end to end in the mode that central axes are overlapped in the gravity direction to form a vacuum container (1), and the hollow part inside the first vacuum container (1.1) and the hollow part inside the second vacuum container (1.2) are communicated into a whole; two Raman laser beam emitters (7) are respectively arranged on the vacuum container (1) along the central axis of the gravity field direction, and the Raman laser beam emitters (7) carry out opposite emitting and point to the preparation regions of cold atomic groups (c), and the two unit devices share the pair of Raman laser beam emitters (7). The vertical gravity gradient measuring sensor enables noise and deviation from environment and Raman laser phase positions to be offset in a common-mode mode, and reduces the complexity, the size, the mass and the power consumption of a physical system.
Owner:WUHAN INST OF PHYSICS & MATHEMATICS CHINESE ACADEMY OF SCI

Gravity-gradient-invariant-based method for estimating orbit element

The invention provides a gravity-gradient-invariant-based method for estimating an orbit element. The method comprises: step one, carrying out preparation work; step two, carrying out decomposition of an ideal gravity gradient tensor under an east-noth-up (ENU) coordinate system and obtaining feature values; step three, solving decomposition of a measuring epoch J2 model gravity field tensor under the ENU coordinate system and obtaining feature values; step four, solving all measuring epochs r and phi by using feature values of a J2 gravity gradient matrix; step five, calculating an initial orbit element by using the r and phi; and step six, carrying out orbit element smoothing. Therefore, with utilization of the gravity gradient matrix invariant information measured during the satellite operating process, a geometrical distance between the satellite and the earth's core and the latitude of the earth's core are obtained by iterative solution; a measurement equation that uses a semi-major axis, an eccentricity ratio, an orbit inclination angle, a perigee depression angle, and a true anomaly in an orbital element as state parameters is provided by using an obtained data as an observed quantity; and a perturbation kinetic equation of the orbital element is introduced innovatively and five orbital elements are estimated by using a batching least square method. The gravity-gradient-invariant-based method has advantages of high autonomous degree, high anti-interference capability, and low building cost and the like and has advantages that the traditional method does not have in the deep space exploration field.
Owner:BEIHANG UNIV

Method for inverting earth gravitational field by using variance-covariance diagonal tensor principle

The invention relates to a method for precisely measuring the earth gravitational field, in particular to a method for inverting the earth gravitational field by using a variance-covariance diagonal tensor principle. The method comprises the following steps of: establishing a cumulative geoidal surface error model on the basis of satellite gravity gradient variance-covariance diagonal tensor principle; accurately and rapidly inverting the earth gravitational field by using the satellite gravity gradient measurement data of a spaceborne gravity gradiometer; and developing requirement argumentation on a GOCE (Gravity Field and Steady-State Ocean Circulation Explorer)-II satellite gravity gradient system by using the satellite orbit altitude and the precision index of the satellite gravity gradiometer. The method disclosed by the invention is high in inversion precision of the earth gravitational field, high in inversion speed of the satellite gravity gradient, explicit in physical content of a satellite observation equation, capable of easily developing the requirement analysis of the satellite gravity gradient system and low in requirement on computer performances. Therefore, the method for inverting the earth gravitational field by using the variance-covariance diagonal tensor principle is an effective method for resolving the earth gravitational field with high precision and high spatial resolution.
Owner:INST OF GEODESY & GEOPHYSICS CHINESE ACADEMY OF SCI

Structure-constrained two-dimensional gravity gradient and magnetotelluric joint inversion method

The invention relates to a structure-constrained two-dimensional gravity gradient and magnetotelluric joint inversion method. The method includes the steps of establishing a multi-component gravity gradient and magnetotelluric joint inversion objective function, calculating forward responses and Jacobian matrixes of a gravity gradient method and a magnetotelluric method, and obtaining a fitting difference value between forward response values and observed data. The multi-component gravity gradient method is introduced into joint inversion to replace a conventional gravity exploration method. The magnetotelluric method provides abundant frequency information and large exploration depth. The introduction of the method into the joint inversion effectively overcomes defects of poor gravity gradient and poor gravity vertical resolution and better enables a density inversion model to be recovered. The method of the invention is a joint inversion method based on cross gradient structure coupling. Compared with single inversion and other conventional physical coupling inversion methods, the method of the invention does not depend on rock physical relationships and can better recover a realmodel structure, whether in physical property numerical value or in geometric space shape.
Owner:JILIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products