Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

435 results about "Raman laser" patented technology

A Raman laser is a specific type of laser in which the fundamental light-amplification mechanism is stimulated Raman scattering. In contrast, most "conventional" lasers (such as the ruby laser) rely on stimulated electronic transitions to amplify light.

High power optical apparatus employing large-mode-area, multimode, gain-producing optical fibers

Optical apparatus includes a multimode, gain-producing fiber for providing gain to signal light propagating in the core of the fiber, and a pump source for providing pump light that is absorbed in the core, characterized in that (i) the pump source illustratively comprises a low brightness array of laser diodes and a converter for increasing the brightness of the pump light, (ii) the pump light is coupled directly into the core, and (iii) the area of the core exceeds approximately 350 μm2. In one embodiment, the signal light propagates in a single mode, and the pump light co-propagates in at least the same, single mode, both in a standard input fiber before entering the gain-producing fiber, and a mode expander is disposed between the input fiber and the gain-producing fiber. In another embodiment, multiple pumps are coupled into the core of the gain-producing fiber. The pumps may generate light of the same wavelength or of different wavelengths. In accordance with a particular embodiment of our invention, we have demonstrated amplification of nanosecond optical pulses at 1545 nm in a single clad Er-doped fiber having a core area of 875 μm2; the core was pumped by a high brightness Raman laser at 1480 nm; and the pulses had a record peak power of several hundred kW.
Owner:OFS FITEL LLC

Combination inertial sensor based on multi-component atom interferometer and measurement method of combination inertial sensor

The invention discloses a combination inertial sensor based on a multi-component atom interferometer and a measurement method of the combination inertial sensor, and relates to the technical field of inertial measurement through atom interference. The combination inertial sensor comprises a first inertial-moment-sensitive cold atom interferometer, a second inertial-moment-sensitive cold atom interferometer and a vacuum communication cavity, wherein the first inertial-moment-sensitive cold atom interferometer and the second inertial-moment-sensitive cold atom interferometer are the same in structure. The vacuum communication cavity is communicated with an atom interference area of the first inertial-moment-sensitive cold atom interferometer and an atom interference area of the second inertial-moment-sensitive cold atom interferometer in the horizontal direction. According to the measurement method, multi-frequency laser light is used for simultaneously and independently manipulating two types of alkali metal atoms in the same physical unit, wherein the acceleration and the gravity gradient of one type of alkali metal atoms are measured through a three-pulse pi / 2-pi-pi / 2 Raman laser sequence, and the rotating speed of the other type of alkali metal atoms is measured through a four-pulse pi / 2-pi-pi-pi / 2 Raman laser sequence. Synchronous measurement of a plurality of inertial moments is realized through a simplex physical device at the same time, and the combination inertial sensor based on the multi-component atom interferometer and the measurement method of the combination inertial sensor can play an important role in inertial navigation, resource exploration, earthquake monitoring, physical geographical research and other fields.
Owner:WUHAN INST OF PHYSICS & MATHEMATICS CHINESE ACADEMY OF SCI

Stable solid state raman laser and method of operating same

The present invention relates to a stable solid-state Raman laser (1), the solid-state Raman laser including: (a) a resonator cavity defined by at least two reflectors (M1 and M2), (b) a laser material (2A) located in the resonator cavity and capable of generating a cavity laser beam which propagates within the resonator cavity, (c) a solid Raman medium (7) located in the resonator cavity for shifting the frequency of the cavity laser beam to produce a Raman laser beam which propagates within the resonator cavity; and (d) an output coupler (M2) for coupling and outputting the Raman laser beam from the resonator cavity, wherein at least one parameter selected from the group consisting of (i) the position of the laser material (2A) relative to the position of the Raman medium (7) in the cavity, (ii) the length of the cavity and (iii) the curvature of at least one of the reflectors (M1 or M2), is selected such that changes in the focal lengths of both the laser material (2A) and the Raman medium (7) as a result of thermal effects in the laser material (2A) and the Raman medium (7) during operation of the laser do not substantially cause instability in the power of the output Raman laser beam. A method of maintaining stable operation of a solid state Raman laser is also described.
Owner:MACQUARIE UNIV

Novel optical fiber Brillouin light time domain analyzer

The invention discloses an optical fiber Brillouin optical time domain analyzer, which is made based on optical fiber broadband nonlinear light amplification effect and strain, temperature effect and optical light domain analysis principle of coherent amplified Brillouin scattering. The optical fiber Brillouin optical time domain analyzer comprises a narrowband single-frequency fiber laser, a fiber beam splitter, a pulse modulator, two optical fiber circulators, a heterodyne receiver, a digital signal processor, a fiber-grating filter, a monomode fiber and a continuous-operating fiber Raman pump laser. The continuous-operating high-power fiber Raman pump laser is used as the pump light source of the Brillouin optical time domain analyzer, which can overcome the difficulty in strictly locking the frequency of a detection laser and the pump laser of the Brillouin optical time domain analyzer; and boardband fiber nonlinear scattering amplification is used for substituting for narrowband Brillouin amplification to increase the gain of stimulated Brillouin scattering with back amplification, thus improving the S/N ratio of the system, increasing the measurement length, and improving the accuracy for simultaneous measurement of stain and temperature.
Owner:WEIHAI BEIYANG PHOTOELECTRIC INFORMATION TECH

Vertical gravity gradient measuring sensor based on atom interference effect

The invention discloses a vertical gravity gradient measuring sensor based on an atom interference effect, and belongs to the technical field of gravity surveying. The sensor comprises a first unit device (A) and a second unit device (B) of the same structures, and is characterized in that a first vacuum container (1.1) and a second vacuum container (1.2) are connected end to end in the mode that central axes are overlapped in the gravity direction to form a vacuum container (1), and the hollow part inside the first vacuum container (1.1) and the hollow part inside the second vacuum container (1.2) are communicated into a whole; two Raman laser beam emitters (7) are respectively arranged on the vacuum container (1) along the central axis of the gravity field direction, and the Raman laser beam emitters (7) carry out opposite emitting and point to the preparation regions of cold atomic groups (c), and the two unit devices share the pair of Raman laser beam emitters (7). The vertical gravity gradient measuring sensor enables noise and deviation from environment and Raman laser phase positions to be offset in a common-mode mode, and reduces the complexity, the size, the mass and the power consumption of a physical system.
Owner:WUHAN INST OF PHYSICS & MATHEMATICS CHINESE ACADEMY OF SCI

Method for acquiring complex refractive index of urban aerosol on basis of various ground-based remote sensing technologies

The invention relates to a method for acquiring a complex refractive index of urban aerosol on the basis of various ground-based remote sensing technologies. The method comprises the following steps of: acquiring the extinction coefficient and the scattering extinction ratio of the aerosol through an inverse algorithm by virtue of Raman laser radar echo signals, and integrating the extinction coefficient of a certain route to acquire the optical thickness of the aerosol on the route; continuously correcting the extinction coefficient and the scattering extinction ratio by performing iterative alignment on an aerosol optical thickness of a whole atmospheric layer acquired via a sun photometer and the aerosol optical thickness acquired via a laser radar according to a Monte Carlo principle; then acquiring the particle size distribution of the aerosol via a particle spectrometer; and finally, acquiring the complex refractive index of the urban aerosol according to a mie-scattering model by virtue of the known scattering extinction ratio of the aerosol and the particle size distribution of the aerosol. According to the invention, the complex refractive index of the urban aerosol is acquired by the Raman laser radar, the sun photometer and the particle spectrometer, and the method has the advantages of small error, high discriminability and high universality.
Owner:ANHUI INST OF OPTICS & FINE MECHANICS - CHINESE ACAD OF SCI

Random-distribution feedback optical fiber laser

The invention relates to a random-distribution feedback optical fiber laser which can realize stable, space-irrelevant and continuous laser output, and belongs to the technical field of the optical fiber laser. The random-distribution feedback optical fiber laser comprises a pump laser, a wavelength division multiplexer, a fiber bragg grating, an Er-doped optical fiber, an optical fiber Raman laser and a long monomode optical fiber. The reflection effect of the fiber bragg grating is combined with the distributed Rayleigh scattering effect of the optical fiber to form a distributed random feedback optical resonant cavity; and the light is subjected to gain amplification by an Er-doped optical fiber and the stimulated Raman scattering effect. Compared with the random-distribution feedback optical fiber laser reported before, the threshold value of the pump laser and the length of the monomode optical fiber can be reduced, and the limitation on stimulated emission wavelength and the wavelength number by a Rayleigh gain peak is broken through, thereby realizing the purpose of tuning the laser wavelength. The random-distribution feedback optical fiber laser is suitable for fields, such as remote optical fiber sensing, remote communication and the like.
Owner:唐山市神州科贸有限公司

Sensor and method for measuring gravitational potential three-order differential quotient based on atom interference effect

The invention discloses a sensor and method for measuring a gravitational potential three-order differential quotient based on an atom interference effect, and relates to the technical field of cold atoms in atomic and molecular physical subjects. The sensor is composed of two cold atom interference devices, the central axes of two interference regions are overlapped, two vacuum containers are communicated into a whole in the direction of the central axes, and meanwhile a two-dimensional magneto-optical trap region is arranged. The measuring method is characterized in that the collecting process of a single set of original data points comprises the following steps that the two devices are used for emitting four synchronous faller cold atom groups, an initial state is prepared, synchronous correlation operations based on common Raman laser beams are carried out, and a final state is detected; the data processing process comprises the steps of converting n sets of original data points into n two-order phase difference data points and carrying out fitting processing. According to the system and the method, the influence of external interference and internal noise on measurement can be greatly restrained, and important significance is achieved for resource exploration, geologic structure analysis, physical geography study and other fields.
Owner:WUHAN INST OF PHYSICS & MATHEMATICS CHINESE ACADEMY OF SCI

Cold atom interferometry principle-based inertia measuring device

ActiveCN105066991ASynchronization work statusNavigation by speed/acceleration measurementsBeam splitterRubidium
The invention discloses a cold atom interferometry principle-based inertia measuring device. The cold atom interferometry principle-based inertia measuring device comprises three inertia measuring units, a Raman laser, and a light dividing device with adjustable splitting ratio; each inertia measuring unit comprises a single-mode narrow linewidth laser, an interferometic cavity, a optical fiber beam splitter, four acoustic optical modulators (AOM), and one electrooptical modulator (EOM); the interferometic cavities are filled with rubidium atomic vapor; Raman laser light send by the Raman laser can be divided into three beams of Raman laser light via the light dividing device with adjustable splitting ratio, and the three beams of Raman laser light are send to the three inertia measuring units; wherein the incidence directions of the three beams of Raman laser light are orthogonal to each other. According to the cold atom interferometry principle-based inertia measuring device, a reasonable structure scheme is adopted; three atom interferometers are arranged in a pyramid mode, so that sensitive acceleration directions of the atom interferometers are orthogonal to each other, and sensitive angular velocity directions are orthogonal to each other. One set of laser system is shared by the three atom interferometers, so that synchronization of atom interference process is realized, and the atom interferometer-based inertia measuring units are sensitive to inertial parameters with six degrees of freedom simultaneously.
Owner:NO 717 INST CHINA MARINE HEAVY IND GRP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products